

Save the planet: do not print this manual unless you really need to.

Release 2.0 - December, 2021 © Copyright 2021 Alkeria SRL - All rights reserved

The information in this document is subject to change without notice. Information, drawings and illustrations contained herein are the property of Alkeria SRL. No part of this manual may be reproduced or distributed by any means, electronic or mechanical, without the express written consent of Alkeria SRL.

Summary

1	Getti	ing started	8
	1.1	Requirements	8
	1.2	Software download	9
	1.3	Connections	12
	1.4	First Start	13
		1.4.1 Status LED	13
		1.4.2 Run Alkeria player	13
		1.4.3 How to get a good image	15
2	Intro	ducing CELERA Cameras	16
	2.1	CELERA	17
		2.1.1 Detailed Specifications	19
	2.2	CELERA One	25
		2.2.1 Detailed Specifications	27
	2.3	Optional accessories	31
	2.4	Ordering Informations	31
	2.5	USB 3.2 Gen 1x1 SuperSpeed interface	32
		2.5.1 Isochronous endpoint	32
		2.5.2 Bulk endpoint	32
		2.5.3 USB 3.2 Gen 1x1 controller cards	33
	2.6	Installation requirements	33
	2.7	MaestroUSB3 SDK	33
		2.7.1 Software License	34
	2.8	Safety and Precautions	34
3	Hard	ware Description	36
	3.1	Sensors	36
		3.1.1 AMS CMV Sensors	36
		3.1.1.1 Monochrome Spectral response	36
		3.1.1.2 Color Spectral response	37
		3.1.2 SONY IMX Sensors	38
		3.1.2.1 Monochrome Spectral response	38
		3.1.2.2 Color Spectral response	38
	3.2	Filters	39

	3.3	Mechanical description)
	3.4	Adapters for standard lens	2
		3.4.1 C-Mount adapter	2
		3.4.1.1 Maximum lens protrusion	3
		3.4.2 F-Mount adapter	1
	3.5	Flange Focal Distance	5
	3.6	Handling precautions	ś
		3.6.1 Temperature and humidity	ś
		3.6.2 Warranty limitations	5
		3.6.3 Mechanical stress	5
		3.6.4 Heat dissipation	ś
		3.6.5 Monitoring internal temperature	7
		3.6.6 Automatic internal temperature safety mechanism	7
		3.6.7 EMI/ESD precautions: noise and electrostatic discharge	3
	3.7	Cleaning CELERA camera)
		3.7.1 Before starting)
		3.7.2 Cleaning CELERA camera housing)
		3.7.3 Optical path cleaning)
		3.7.4 Impurities)
		3.7.5 Filter cleaning)
		3.7.6 Sensor cleaning	1
		3.7.7 Using compressed air	1
		3.7.8 After cleaning procedure	2
,	In the second	for the standard and the second of	
4		facing to the world	
		I/O cable	
	4.2	I/O module	
		4.2.1 Input module structure	
		4.2.1.1 Debouncing module	
		4.2.1.2 Input events	
		4.2.1.3 RS-422	
		4.2.1.4 RS-644	
		4.2.1.5 LV-TTL/LV-CMOS	
		4.2.2 Output module structure	
		4.2.2.1 RS-422	
		4.2.2.2 RS-644	
		4.2.2.3 LV-TTL/LV-CMOS	
		4.2.3 Bidirectional module structure (port 0)	
	4.0	4.2.4 I/O switching time	
	4.3	Using input signals	
		4.3.1 Encoder module	
		4.3.1.1 Encoder hysteresis	
		4.3.1.2 Direction reversal	
		4.3.1.3 Configuring the encoder module	
		4.3.1.4 Reading and resetting encoder position	5

		4.3.2 Frequency Multiplier (Phase Locked Loop (PLL))	 66
		4.3.3 Trigger manager	 67
	4.4	Controlling output ports	 68
		4.4.1 Polarity	 68
		4.4.2 Software output	 69
		4.4.3 Trigger Output	 69
		4.4.3.1 Exposure	 69
		4.4.3.2 Strobe	 70
		4.4.3.3 Trigger	 70
		4.4.3.4 Trigger ready	 71
		4.4.4 Custom sources	 71
		4.4.5 Input and output ports usage examples	 71
	4.5	Serial Interface Module	 72
5	Syste	em Setup	74
3	•	USB Setup	74
	5.1	5.1.1 How to choose a suitable USB cable	74 74
	F 2	5.1.2 Recommended USB interface	75 77
	5.2	Status LED	77 77
	5.3	When one CELERA is not enough	 77
6	Trigg	er	78
	6.1	Trigger sources	 78
	6.2	Acquisition start trigger	 79
	6.3	Frame start trigger	 79
	6.4	End-of-exposure trigger	 79
	6.5	Trigger delay	 80
		6.5.1 Encoder delay	 80
		6.5.2 Trigger overrun	 80
	6.6	Trigger configuration example	 81
		6.6.1 External trigger frame acquisition	 81
		6.6.2 Signal-driven exposure time	 82
		6.6.3 Encoder synchronization	 83
7	Then	rocessing Chain	84
•	7.1	Light Meter	84
	7.1	Black level offset	85
	7.2	Chunk data	86
	7.3		86
			87
		1	
		7.3.2.1 Time stamp resolution	87
		7.3.3 Encoder position	87
		7.3.4 Input status	87
		7.3.5 Burst number	87
		7.3.6 Sequencer page	88
		7.3.7 Configuration example	 88

	7.4	Frame C	Combiner
		7.4.1	Flush and AutoFlush
		7.4.2	Configuration example
8	Captı	ıring ima	ages 90
	8.1	Video m	nodes
		8.1.1	Mode 0 (Normal)
		8.1.2	Mode 1 (RAW)
		8.1.3	Mode 2 (Subsampling)
	8.2	Region	of Interest (ROI)
	8.3	Binning	
	8.4	Pixel for	rmat
	8.5	ADC res	solution
	8.6	Frame r	ate and bandwidth
		8.6.1	Reserving bandwidth for isochronous channel
		8.6.2	Bandwidth limits for isochronous endpoint
		8.6.3	Bandwidth limit for bulk endpoint
		8.6.4	Packet size for isochronous endpoint
		8.6.4	4.1 Calculating the required bandwidth
		8.6.5	Packet size for bulk endpoint
		8.6.6	Connecting multiple devices to the same host
		8.6.7	Frame rate
		8.6.8	Preserve rates
		8.6.9	Maximizing frame rate
	8.7	Control	s
		8.7.1	Brightness
		8.7.2	Contrast
		8.7.3	Color correction matrix (color models only)
		8.7.4	Hue (color models only)
		8.7.5	Saturation (color models only)
		8.7.6	White Balance (color models only)
		8.7.7	Gamma
		8.7.8	Shutter
		8.7.8	8.1 High resolution shutter
		8.7.8	8.2 Shutter resolution
		8.7.8	8.3 Shutter floor
		8.7.8	8.4 Disable overlap
		8.7.8	8.5 Automatic exposure
		8.7.9	Analog Gain
		8.7.10	Digital Gain
		8.7.11	User Look-Up Table (LUT)s
		8.7.12	Luma
		8.7.13	Time Stamp
		8.7.14	Flip and Rotate
	8.8	Saving	device configuration

		8.8.1	Export and import XML	118
		8.8.2	User configuration (deprecated)	119
	8.9	Configu	ration Example	119
	8.10	Pattern	Generator	120
9			nced Sequencer	121
	9.1	· ·	cer Enabled Controls	
	9.2	•	ncept	
	9.3	•	tup	
		9.3.1	Writing Page Settings	
		9.3.2	First and Last page	
	9.4	_	between pages	
		9.4.1	Manual page selection	124
		9.4.2	Increment and reset events	124
		9.4.3	Event Sources	125
	9.5	Conflict	s and timings	125
	9.6	Example	es of configuration	125
		9.6.1	Example 1: drive illuminators with CELERA camera	125
		9.6.2	Example 2: split camera field	127
10	Allega		_	120
10		ia playe		128
			Connection and Initialization	128
			buttons	
	10.3		Panel	
			Advanced Sequencer Page	
		10.3.2	Features	
		10.3.3	Video Settings	
		10.3.4	Trigger	
		10.3.5	Alkeria Advanced Sequencer	
			Advanced features	
			quence Panel	
			Frames Panel	
	10.6			
		10.6.1	Saving and Exporting Configuration	136
		10.6.2	I/O panel	137
		10.6.3	Black Level Calibration (CMV models only)	138
		10.6.4	LUT Editor	140
44	D CII			1/1
"			extension for laser triangulation	141
			angulation	141
	11.2		ne position detection	
			Thresholds	
	44.0		Main Processing	
	11.3		acquisition	
			Video Mode 1	143
		1127	Video Made 1	コカウ

Summary

11.3.3	Video Mode 2	144
11.4 Exploiti	ng frame combiner with Profilometer	144
11.5 Player u	tilities	144
11.5.1	Live Profile	144
11.5.2	Profilometer Settings	145
11.6 Parame	ters set-up	145
12 Warranty		147
12.1 RMA .		147
13 Firmware Upo	late	148
14 EMC certifica	tion and compliance	149
	tion and compliance ormity	
14.1 CE conf	·	149
14.1 CE conf 14.2 FCC cor	ormity	149 150
14.1 CE conf 14.2 FCC cor 14.3 ICES-00	ormity	149 150 150
14.1 CE conf 14.2 FCC cor 14.3 ICES-00 14.4 Limitati	ormity	149 150 150 150
14.1 CE conf 14.2 FCC cor 14.3 ICES-00 14.4 Limitati 14.5 RoHS C	ormity	149 150 150 150 150
14.1 CE conf 14.2 FCC cor 14.3 ICES-00 14.4 Limitati 14.5 RoHS C	ormity	149 150 150 150 150

1

Getting started

1.1 REQUIREMENTS

For getting started with CELERA you will need the material listed below:

- A CELERA camera equipped with a lens adapter (Figure 1.1);
- A lens compatible with the chosen lens adapter;
- An USB 3.2 Gen 1x1 cable (Figure 1.2);
- A computer with an USB 3.2 Gen 1x1 controller;

Figure 1.1: CELERA camera

Figure 1.2: Required USB cable is type-A on the PC side (a) and micro-B on the camera side (b).

1.2 SOFTWARE DOWNLOAD

After camera purchasing, our Sales Department will provide you with access to our website's User Area. In there you can find everything you need to set and use the camera: manuals, guides, tutorials, software and firmware updates. Users Area accounts are personal, and can only be created by Alkeria's Sales Dept.

Once your account has been activated, you will receive an email to reset your account password: click on the link to set your password. Please store your login credentials in a secure place.

To download the software, follow these steps:

Step 1: Go to our website www.alkeria.com (Figure 1.3)

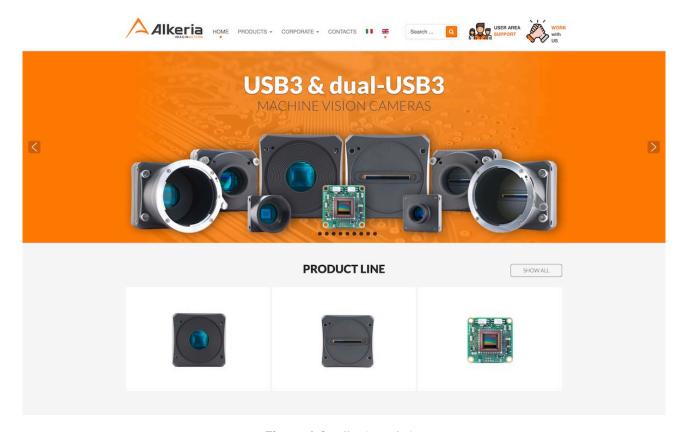


Figure 1.3: Alkeria website

Step 2: Click on "User Area - Support" top-right button (Figure 1.4)

Figure 1.4: User Area button

Step 3: Once redirected to login form, insert your username and password and click "Login" (Figure 1.5)

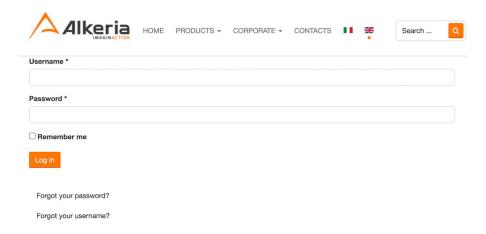


Figure 1.5: User Area log in form

Step 4: On "Downloads" root folder, you can find many file categories, each containing various files (Figure 1.6)

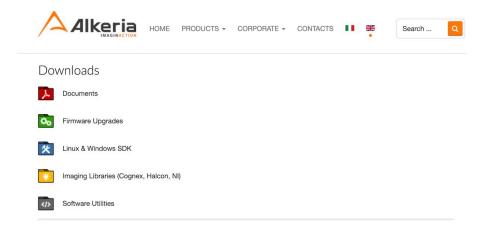


Figure 1.6: User Area root folder

Step 5: Click on "Download" to download a file (fig. 1.7)

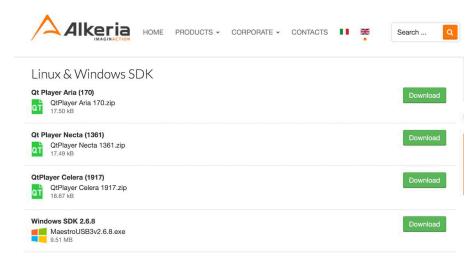


Figure 1.7: Example of file listing inside Linux & Windows SDK category

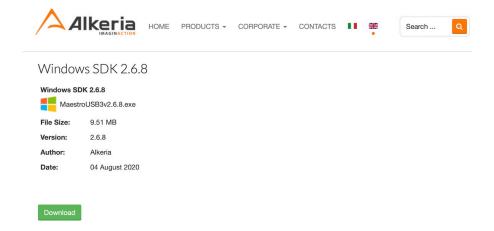


Figure 1.8: Example of single file view

Step 6: Click on the "Log out" orange button to end your session (Figure 1.8), then install the downloaded executable as administrator.

 Δ

1. Getting started 12 ___

1.3 CONNECTIONS

Before starting, connect the camera to the PC following these steps:

Step 1: Mount the camera on a stable support;

Step 2: Mount the lens on the adapter;

Step 3: Connect the USB micro-B plug (Figure 1.2b) to the camera;

Step 4: Connect the USB type A plug (Figure 1.2a) to a SuperSpeed USB port on the PC.

1.4 FIRST START

1.4.1 Status LED

CELERA features two status LEDs on its back, showing the operating conditions of the camera. When one or both camera connectors are plugged in, LEDs remain red until the computer detects and configures the camera, then they both turn to green. If just the main connector is plugged, the secondary LED remains off after OS enumeration. The second connector can be connected at any time. LEDs turn to orange when the camera is acquiring from the related connectors.

Different behaviours of the status LED may indicate that camera is malfunctioning. To a complete reference on the status LED codes, refer to Table 5.1.

1.4.2 Run Alkeria player

MaestroUSB3 comes with a user-friendly software application, allowing to explore the main features of CELERA cameras and check the correct camera and software installation. Once installed MaestroUSB3 SDK, you can find the application at the following path:

Program Files\Alkeria\USB3\MaestroUSB3\Players

Alternatively, you can easily start the Alkeria player by accessing the Windows Start button and look for *Alkeria player* from the MaestroUSB3 Program folder: Start->All programs->Alkeria->USB3->MaestroUSB3.

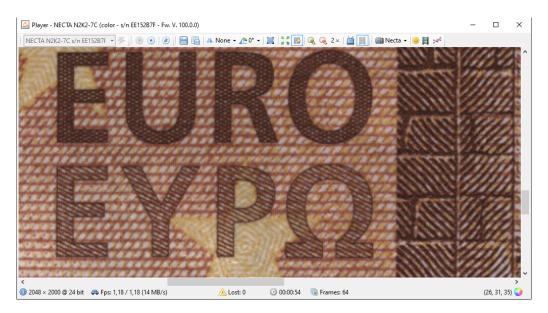


Figure 1.9: Alkeria player main window

A subset of the toolbar controls is shown in Table 1.1.

4	Init	Initialize the camera to default settings (camera power-up status).
•	Play	Start image playback.
	Stop	Stop image playback.
69	Settings	Open the settings panel.

Table 1.1: Relevant Alkeria player buttons

Press "Play" button to start the acquisition of images from the camera. At the bottom of the player window a status bar displays the following data:

- The image resolution and the pixel depth;
- The frame rate;
- A frame lost counter, which indicates whether some frames have been corrupted during transfer and have been discarded;
- A timer counter indicating the acquisition time;
- A frame counter;

Pressing the "Settings" button, you will have access to the main camera acquisition parameters such as Shutter and Gain. Move them while CELERA is acquiring images to familiarize with the controls.

To get more information about player functionalities, please refer to Chapter 10.

1.4.3 How to get a good image

The camera is not yet able to provide a perfect image. A step of calibration is needed to cancel out all the differences between the individual pixels on the sensor, such as black level and individual pixel's gain.

To calibrate the camera press CELERA on the toolbar and then click on Calibration to open the wizard.

If you want to learn more about calibration, check out tutorials and guides on your website's User Area.

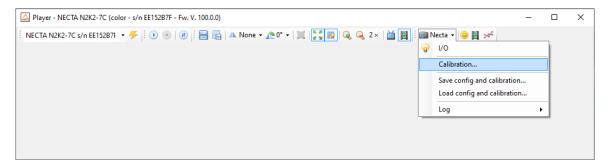


Figure 1.10: Alkeria player Calibration Wizard

2

Introducing CELERA Cameras

CELERA is Alkeria's answer to the demand of its OEM customers in medical and industrial field. CELERA takes performances to a new level thanks to its unique dual-USB 3.2 Gen 1x1 solution, specifically designed to get the best from AMS (formerly CMOSIS) CMV and SONY Pregius CMOS sensors, while sharing the same compact, reliable and versatile form factor of its NECTA line-scan counterpart. With advanced firmware features, uncompromised quality and a powerful FPGA for on-demand customization, CELERA is the flagship model in Alkeria cameras range.

2.1 CELERA

CELERA is a family of compact area scan cameras with dual USB 3.2 Gen 1x1 interface. The adoption of new technology Complementary MOS (CMOS) linear sensors and USB 3.2 Gen 1x1 connectivity allows CELERA to reach very high acquisition speed while still using consumer-class interface.

CELERA is directly powered by the USB 3.2 Gen 1x1 bus eliminating the need for external power adapters. Reduced size and low power consumption, solid construction, low installation cost, ease of programming and versatility make CELERA devices suited for the most demanding industrial applications: inline inspection, web inspection, document scanning, metrology.

An easy-to-use set of software API is available, which allows developers to quickly produce fast and clean code both on Windows and Linux, supporting all major programming languages, such as Python, C#, VB, C++ in Visual Studio or QT environment. Our Software Development Kit provided with CEL-ERA cameras, is fully compatible with Cognex VisionPro, MVTech Halcon, NI LabView and other major machine vision software for industrial application.

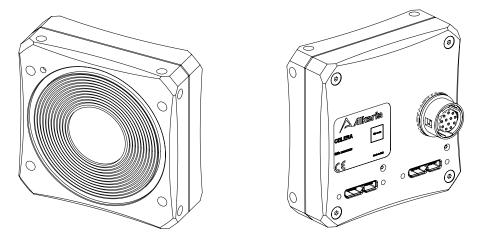


Figure 2.1: CELERA camera

Model Name	Sensor	Resolution (H x W)	Chroma
CELERA C2K-M	AMS CMV2000	2048 x 1088 (2.2 MP)	Mono
CELERA C2K-N	AMS CMV2000	2048 x 1088 (2.2 MP)	NIR
CELERA C2K-C	AMS CMV2000	2048 x 1088 (2.2 MP)	Color
CELERA C4K-M	AMS CMV4000	2048 x 2048 (4.2 MP)	Mono
CELERA C4K-C	AMS CMV4000	2048 x 2048 (4.2 MP)	Color
CELERA C3S-M	SONY IMX252	2064 x 1544 (3.2 MP)	Mono
CELERA C3S-C	SONY IMX252	2064 x 1544 (3.2 MP)	Color
CELERA C5S-M	SONY IMX250	2464 x 2056 (5.1 MP)	Mono
CELERA C5S-C	SONY IMX250	2464 x 2056 (5.1 MP)	Color
CELERA C12S-M	SONY IMX304	4112 x 3004 (12.3 MP)	Mono
CELERA C12S-C	SONY IMX304	4112 x 3004 (12.3 MP)	Color
CELERA C12SX-M	SONY IMX253	4112 x 3004 (12.3 MP)	Mono
CELERA C12SX-C	SONY IMX253	4112 x 3004 (12.3 MP)	Color

Table 2.1: CELERA cameras family overview

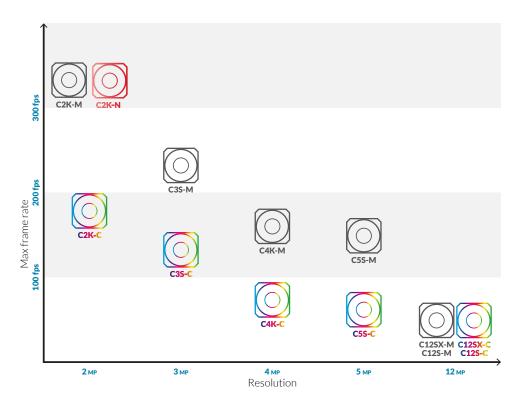


Figure 2.2: CELERA cameras overview

2.1.1 Detailed Specifications

Specification	CELERA C2K-M	CELERA C2K-N	CELERA C2K-C	
Sensor model		AMS CMV2000		
Sensor type	Mono	NIR	Color	
Sensor resolution		2048(W) x 1088(H) (2.	2 MP)	
Sensor technology	CMOS, global shutter			
Sensor format	2/3"			
Pixel size		$5.5\mu\text{m} imes 5.5\mu\text{m}$		
Max. frame rate	337 fps	337 fps	174 fps	
A/D Conversion		10, 11, 12 bits	<u> </u>	
Synchronization		External trigger, software	e trigger	
Controls	Shutter, gain, brightnes	s, contrast, saturation, LUT,	gamma, white balance, sequence	
Shutter control		15 μs ÷ 5 s (1 μs ste _l	ps)	
Sequencer		Up to 64 pages		
Binning factor	2x horizontal, 2x vertical			
Readout	Normal, binning, frame combiner, AOI, subsampling			
Power supply	3 W max, powered by USB 3.2 Gen 1x1			
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)			
Lens adapter		C-mount, F-moun	t	
Interface		Dual USB 3.2 Gen 1	x1	
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24	
Weight		126 g (with C-mount ad	lapter)	
Size (without adapters)	56 mm x 56 mm x 26.7 mm			
Size (with C-mount)		56 mm x 56 mm x 38.3	3 mm	
Size (with F-mount)	56 mm x 56 mm x 67.3 mm			
Conformity	CE, RoHS, FCC, IC			
Operating temperature		0 ÷ 50 °C (referred to ho	ousing)	
Software	MaestroUSB3			
Link	www.a	lkeria.com/products/	CELERA-series	
Warranty		24 months		

Table 2.2: CELERA C2K Specifications

Specification	CELERA C4K-M	CELERA C4K-C	
Sensor model	AMS CI	MV4000	
Sensor type	Mono	Color	
Sensor resolution	2048(W) x 2048(H) (4.2 MP)		
Sensor technology	CMOS, global shutter		
Sensor format	-	1"	
Pixel size	5.5 µm	× 5.5 μm	
Max. frame rate	179 fps	92 fps	
A/D Conversion	10, 11,	, 12 bits	
Synchronization	External trigger,	, software trigger	
Controls	Shutter, gain, brightness, contrast, saturat	ion, LUT, gamma, white balance, sequence	
Shutter control	26 µs ÷ 5 s	(1 µs steps)	
Sequencer	Up to 6	64 pages	
Binning factor	2x horizontal, 2x vertical		
Readout	Normal, binning, frame combiner		
Power supply	3 W max, powered by USB 3.2 Gen 1x1		
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)		
Lens adapter	C-mount	r, F-mount	
Interface	Dual USB 3	3.2 Gen 1x1	
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24	
Weight	126 g (with C-mount adapter)		
Size (without adapters)	56 mm x 56 mm x 26.7 mm		
Size (with C-mount)	56 mm x 56 mm x 38.3 mm		
Size (with F-mount)	56 mm x 56 mm x 67.3 mm		
Conformity	CE, RoHS, FCC, IC		
Operating temperature	0 ÷ 50 °C (referred to housing)		
Software	MaestroUSB3		
Link	www.alkeria.com/pro	oducts/CELERA-series	
Warranty	24 m	onths	

Table 2.3: CELERA C4K Specifications

Specification	CELERA C3S-M	CELERA C3S-C	
Sensor model	SONY	IMX252	
Sensor type	Mono	Color	
Sensor resolution	2064(W) x 1544(H) (3.2 MP)		
Sensor technology	CMOS, global shutter		
Sensor format	1/	/1.8"	
Pixel size	3.45 µm	$ imes$ 3.45 μm	
Max. frame rate	216 fps	120 fps	
A/D Conversion	8, 10	, 12 bits	
Synchronization	External trigge	r, software trigger	
Controls	Shutter, gain, brightness, contrast, satura	tion, LUT, gamma, white balance, sequence	
Shutter control	17 μs ÷ 5 s	s (1 µs steps)	
Sequencer	Up to	64 pages	
Binning factor	2x/4x/8x horizontal, 2x/4x/8x vertical		
Readout	Normal, binning, frame combiner, AOI, subsampling		
Power supply	3 W max, powered by USB 3.2 Gen 1x1		
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)		
Lens adapter	C-moun	t, F-mount	
Interface	Dual USB	3.2 Gen 1x1	
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24	
Weight	131 g (with C-mount adapter)		
Size (without adapters)	56 mm x 56 mm x 26.7 mm		
Size (with C-mount)	56 mm x 56 mm x 38.3 mm		
Size (with F-mount)	56 mm x 56 mm x 67.3 mm		
Conformity	CE, RoHS, FCC, IC		
Operating temperature	0 ÷ 50 °C (referred to housing)		
Software	MaestroUSB3		
Link	www.alkeria.com/pr	oducts/CELERA-series	
Warranty	24 n	nonths	

Table 2.4: CELERA C3S Specifications

Specification	CELERA C5S-M	CELERA C5S-C	
Sensor model	SON	Y IMX250	
Sensor type	Mono	Color	
Sensor resolution	2464(W) x 2056(H) (5.1 MP)		
Sensor technology	CMOS, global shutter		
Sensor format		2/3"	
Pixel size	3.45 µr	$m \times 3.45 \mu m$	
Max. frame rate	152 fps	76 fps	
A/D Conversion	8, 1	0, 12 bits	
Synchronization	External trigg	er, software trigger	
Controls	Shutter, gain, brightness, contrast, satur	ration, LUT, gamma, white balance, sequencer	
Shutter control	17 μs ÷ 5	5 s (1 µs steps)	
Sequencer	Up to 64 pages		
Binning factor	2x/4x/8x horizontal, 2x/4x/8x vertical		
Readout	Normal, binning, frame combiner, AOI, subsampling		
Power supply	3 W max, powered by USB 3.2 Gen 1x1		
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)		
Lens adapter	C-mount, F-mount		
Interface	Dual USB 3.2 Gen 1x1		
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24	
Weight	131 g (with C-mount adapter)		
Size (without adapters)	56 mm x 56 mm x 26.7 mm		
Size (with C-mount)	56 mm x 56 mm x 38.3 mm		
Size (with F-mount)	56 mm x 56 mm x 67.3 mm		
Conformity	CE, RoHS, FCC, IC		
Operating temperature	0 ÷ 50 °C (referred to housing)		
Software	MaestroUSB3		
Link	www.alkeria.com/products/CELERA-series		
Warranty	24	months	

Table 2.5: CELERA C5S Specifications

Specification	CELERA C12S-M	CELERA C12S-C
Sensor model	SONY IMX304	
Sensor type	Mono Color	
Sensor resolution	4112(W) x 3	3004(H) (12.3 MP)
Sensor technology	CMOS,	global shutter
Sensor format		1.1"
Pixel size	3.45 μι	m \times 3.45 μ m
Max. frame rate	23 fps	23 fps
A/D Conversion	:	12 bits
Synchronization	External trigg	er, software trigger
Controls	Shutter, gain, brightness, contrast, satur	ration, LUT, gamma, white balance, sequencer
Shutter control	29 μs ÷ 5 s (1 μs steps)	
Sequencer	Up to 64 pages	
Binning factor	2x/4x/8x horizontal, 2x/4x/8x vertical	
Readout	Normal, binning, frame combiner, AOI, subsampling	
Power supply	3 W max, powered by USB 3.2 Gen 1x1	
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)	
Lens adapter	C-mount, F-mount	
Interface	Dual US	B 3.2 Gen 1x1
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24
Weight	131 g (with	C-mount adapter)
Size (without adapters)	56 mm x 56 mm x 26.7 mm	
Size (with C-mount)	56 mm x 56 mm x 38.3 mm	
Size (with F-mount)	56 mm x 56 mm x 67.3 mm	
Conformity	CE, RoHS, FCC, IC	
Operating temperature	0 ÷ 50 °C (referred to housing)	
Software	MaestroUSB3	
Link	www.alkeria.com/products/CELERA-series	
Warranty	24 months	

 Table 2.6: CELERA C12S Specifications

Specification	CELERA C12SX-M	CELERA C12SX-C
Sensor model	SONY IMX253	
Sensor type	Mono	Color
Sensor resolution	4112(W) x 3	3004(H) (12.3 MP)
Sensor technology	CMOS,	global shutter
Sensor format		1.1"
Pixel size	3.45 μι	$m \times 3.45 \mu m$
Max. frame rate	62 fps	31 fps
A/D Conversion	8, 1	0, 12 bits
Synchronization	External trigg	er, software trigger
Controls	Shutter, gain, brightness, contrast, satur	ration, LUT, gamma, white balance, sequencer
Shutter control	25 μs ÷ 5 s (1 μs steps)	
Sequencer	Upto	o 64 pages
Binning factor	2x/4x/8x horizontal, 2x/4x/8x vertical	
Readout	Normal, binning, frame combiner, AOI, subsampling	
Power supply	3 W max, powered by USB 3.2 Gen 1x1	
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)	
Lens adapter	C-mount, F-mount	
Interface	Dual USB 3.2 Gen 1x1	
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24
Weight	131 g (with	C-mount adapter)
Size (without adapters)	56 mm x 56 mm x 26.7 mm	
Size (with C-mount)	56 mm x 56 mm x 38.3 mm	
Size (with F-mount)	56 mm x 56 mm x 67.3 mm	
Conformity	CE, RoHS, FCC, IC	
Operating temperature	0 ÷ 50 °C (referred to housing)	
Software	MaestroUSB3	
Link	www.alkeria.com/products/CELERA-series	
Warranty	24 months	

Table 2.7: CELERA C12SX Specifications

2.2 CELERA ONE

CELERA One is a family of compact area scan cameras with single USB 3.2 Gen 1x1 interface. CELERA One has the same features of CELERA cameras like Advanced Sequencer, Smart Triggering Module and F-Mount option, in a more cost-effective price range. CELERA One is the best choice for application demanding data rate up to $3.2 \, \text{Gibit/s}$. Full software and hardware compatibility between CELERA and CELERA One allows to effortlessly upgrade their system in case of higher speed demand. All CELERA features described in the manual are also valid for CELERA One, unless otherwise specified.

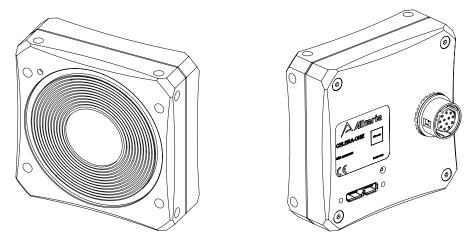


Figure 2.3: CELERA One camera

Model Name	Sensor	Resolution (H x W)	Chroma
CELERA CO2K-M	AMS CMV2000	2048 x 1088 (2.2 MP)	Mono
CELERA CO2K-N	AMS CMV2000	2048 x 1088 (2.2 MP)	NIR
CELERA CO2K-C	AMS CMV2000	2048 x 1088 (2.2 MP)	Color
CELERA CO4K-M	AMS CMV4000	2048 x 2048 (4.2 MP)	Mono
CELERA CO4K-C	AMS CMV4000	2048 x 2048 (4.2 MP)	Color
CELERA CO5S-M	SONY IMX264	2464 x 2056 (5.1 MP)	Mono
CELERA CO5S-C	SONY IMX264	2464 x 2056 (5.1 MP)	Color
CELERA CO12S-M	SONY IMX304	4112 x 3004 (12.3 MP)	Mono
CELERA CO12S-C	SONY IMX304	4112 x 3004 (12.3 MP)	Color

Table 2.8: CELERA One cameras family overview

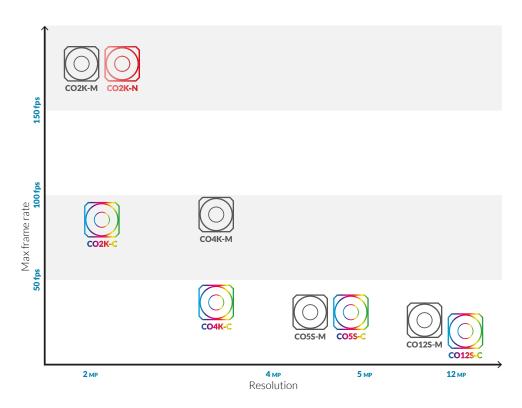


Figure 2.4: CELERA One cameras overview

2.2.1 Detailed Specifications

Specification	CELERA CO2K-M	CELERA CO2K-N	CELERA CO2K-C	
Sensor model	AMS CMV2000			
Sensor type	Mono	NIR	Color	
Sensor resolution	2048(W) x 1088(H) (2.2 MP)			
Sensor technology		CMOS, global shutte	er	
Sensor format		2/3"		
Pixel size		$5.5\mu\text{m} imes 5.5\mu\text{m}$		
Max. frame rate	175 fps	175 fps	87 fps	
A/D Conversion		10, 11, 12 bits		
Synchronization		External trigger, software	trigger	
Controls	Shutter, gain, brightness	s, contrast, saturation, LUT, g	gamma, white balance, sequence	
Shutter control		15 μs ÷ 5 s (1 μs steps)		
Sequencer		Up to 64 pages		
Binning factor		2x/4x horizontal, 2x/4x v	ertical	
Readout	Norma	l, binning, frame combiner, A	AOI, subsampling	
Power supply	3	3 W max, powered by USB 3.	2 Gen 1x1	
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)			
Lens adapter	C-mount, F-mount			
Interface		Single USB 3.2 Gen 1	x1	
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24	
Weight	126 g (with C-mount adapter)			
Size (without adapters)	56 mm x 56 mm x 26.7 mm			
Size (with C-mount)	56 mm x 56 mm x 38.3 mm			
Size (with F-mount)	56 mm x 56 mm x 67.3 mm			
Conformity	CE, RoHS, FCC, IC			
Operating temperature	0 ÷ 50 °C (referred to housing)			
Software	MaestroUSB3			
Link	www.alkeria.com/products/CELERA-one-series			
Warranty	24 months			

Table 2.9: CELERA One CO2K Specifications

Specification	CELERA CO4K-M	CELERA CO4K-C
Sensor model	AMS CMV4000	
Sensor type	Mono	Color
Sensor resolution	2048(W) x	2048(H) (4.2 MP)
Sensor technology	CMOS,	global shutter
Sensor format		1"
Pixel size	5.5 µı	m × 5.5 μm
Max. frame rate	92 fps	46 fps
A/D Conversion	10,	11, 12 bits
Synchronization	External trigg	ger, software trigger
Controls	Shutter, gain, brightness, contrast, satur	ration, LUT, gamma, white balance, sequencer
Shutter control	26 μs ÷ 5 s (1 μs steps)	
Sequencer	Up to 64 pages	
Binning factor	2x/4x horizontal, 2x/4x vertical	
Readout	Normal, binning, frame combiner, AOI, subsampling	
Power supply	3 W max, powered by USB 3.2 Gen 1x1	
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)	
Lens adapter	C-mount, F-mount	
Interface	Single USB 3.2 Gen 1x1	
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24
Weight	126 g (with	C-mount adapter)
Size (without adapters)	56 mm x 56 mm x 26.7 mm	
Size (with C-mount)	56 mm x 56 mm x 38.3 mm	
Size (with F-mount)	56 mm x 56 mm x 67.3 mm	
Conformity	CE, RoHS, FCC, IC	
Operating temperature	0 ÷ 50 °C (referred to housing)	
Software	MaestroUSB3	
Link	www.alkeria.com/products/CELERA-one-series	
Warranty	24 months	

 Table 2.10: CELERA One C4K Specifications

Specification	CELERA CO5S-M	CELERA CO5S-C
Sensor model	SONY IMX264	
Sensor type	Mono Color	
Sensor resolution	2464(W) x :	2056(H) (5.1 MP)
Sensor technology	CMOS,	global shutter
Sensor format		2/3"
Pixel size	3.45 μι	$m \times 3.45 \mu m$
Max. frame rate		35 fps
A/D Conversion		12 bits
Synchronization	External trigg	er, software trigger
Controls	Shutter, gain, brightness, contrast, satur	ration, LUT, gamma, white balance, sequencer
Shutter control	28 μs ÷ 5 s (1 μs steps)	
Sequencer	Up to 64 pages	
Binning factor	2x/4x/8x horizontal, 2x/4x/8x vertical	
Readout	Normal, binning, frame combiner, AOI, subsampling	
Power supply	3 W max, powered by USB 3.2 Gen 1x1	
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)	
Lens adapter	C-mount, F-mount	
Interface	Single USB 3.2 Gen 1x1	
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24
Weight	131 g (with	C-mount adapter)
Size (without adapters)	56 mm x 56 mm x 26.7 mm	
Size (with C-mount)	56 mm x 56 mm x 38.3 mm	
Size (with F-mount)	56 mm x 56 mm x 67.3 mm	
Conformity	CE, RoHS, FCC, IC	
Operating temperature	0 ÷ 50 °C (referred to housing)	
Software	MaestroUSB3	
Link	www.alkeria.com/products/CELERA-one-series	
Warranty	24 months	

 Table 2.11: CELERA One CO5S Specifications

Specification	CELERA CO12S-M	CELERA CO12S-C
Sensor model	SONY IMX304	
Sensor type	Mono Color	
Sensor resolution	4112(W) x 3	3004(H) (12.3 MP)
Sensor technology	CMOS,	global shutter
Sensor format		1,1"
Pixel size	3.45 μι	m \times 3.45 μ m
Max. frame rate	23 fps	15 fps
A/D Conversion	:	12 bits
Synchronization	External trigg	er, software trigger
Controls	Shutter, gain, brightness, contrast, satur	ration, LUT, gamma, white balance, sequencer
Shutter control	36 μs ÷ 5 s (1 μs steps)	
Sequencer	Up to 64 pages	
Binning factor	2x/4x/8x horizontal, 2x/4x/8x vertical	
Readout	Normal, binning, frame combiner, AOI, subsampling	
Power supply	3 W max, powered by USB 3.2 Gen 1x1	
Inputs/outputs	2 in, 2 out, 1 I/O (RS-422, RS-644, LV-CMOS, LV-TTL)	
Lens adapter	C-mount, F-mount	
Interface	Single US	SB 3.2 Gen 1x1
Pixel formats	RAW8, RAW16, MONO8, MONO16	RAW16, MONO16, YUV4:2:2, RGB24
Weight	131 g (with	C-mount adapter)
Size (without adapters)	56 mm x 56 mm x 26.7 mm	
Size (with C-mount)	56 mm x 56 mm x 38.3 mm	
Size (with F-mount)	56 mm x 56 mm x 67.3 mm	
Conformity	CE, RoHS, FCC, IC	
Operating temperature	0 ÷ 50 °C (referred to housing)	
Software	MaestroUSB3	
Link	www.alkeria.com/products/CELERA-one-series	
Warranty	24 months	

 Table 2.12: CELERA One CO12S Specifications

2.3 OPTIONAL ACCESSORIES

CELERA cameras can be completed with the following accessories:

- NAD-C adapter to C-mount lens (see Section 3.4.1)
- NAD-F adapter to Nikon F-mount lens (see Section 3.4.2)
- NIO-x cable for I/O interconnection 3, 5, 10 m long available (see Section 4.1).

2.4 ORDERING INFORMATIONS

Alkeria has various camera series in its product line: each series has several models, with different resolutions, color modes and accessories.

To identify a specific model version, Alkeria uses an internal codename system that allows to describe every camera specification with a unique code.

Understanding how this code works can be useful to our customers both to identify correctly a camera and to request information or ordering to our sales department.

Every camera code is composed by the following parts:

Camera model

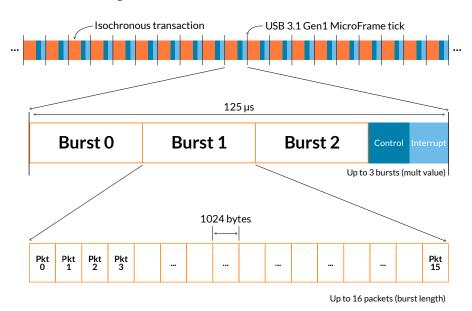
This is the first and main part: it includes camera series and information about sensor like resolution and number of lines.

Color option

The second part, separated by a hyphen, defines the sensor color option for each camera model. In our product line we use different sensor families, most of them available in color, monochrome or Near-InfraRed (NIR) mode.

Lens adapter

Last part of the code, indicates which lens adapter the camera is equipped with. It's the only part that can be omitted, in the case you're choosing a camera without any additional lens adapters.


Figure 2.5: CELERA Ordering information

2.5 USB 3.2 GEN 1X1 SUPERSPEED INTERFACE

CELERA cameras exploit the USB 3.2 Gen 1x1 standard interface to fulfil the bandwidth requirements of fast image sensors and communicate with PC. In order to maximize usable bandwidth of installed USB 3.2 Gen 1x1 controller, user can choose between *isochronous endpoint* and *bulk endpoint* for transmitting video stream. The command stream (controlling camera features) is supported by a bidirectional interrupt endpoint providing quick response and low latency.

2.5.1 Isochronous endpoint

The super-speed *isochronous endpoint* used by CELERA allows up to 3 burst transactions for each $125 \, \mu s$ service interval (micro-frame); each burst transaction supports up to $16 \, packets$ made by $1024 \, B$, reaching up to $3x16x1024 \, B$ as payload for a single micro-frame. Total allowed bandwidth is $375 \, MiB/s$ for CELERA USB $3.2 \, Gen \, 1x1$ connection. The *isochronous endpoint* allows user to reserve a given amount of bandwidth for each device, regardless of the connected device number to the host.

Figure 2.6: USB 3.2 Gen 1x1 Isochronous transactions structure

In order to exploit the maximum throughput, the computer must be able to support that load, therefore particular attention must be paid in choosing cables and USB 3.2 Gen 1x1 host controllers (see Section 5.1 for details).

2.5.2 Bulk endpoint

The super-speed *bulk endpoint* used by CELERA transfers data using bursts of 1 to 16 packets, 1024 B long. The theoretical maximum bandwidth is 500 MiB/s for a single host, even if the camera will only use up to 375 MiB/s of the available bandwidth. Unlike an *isochronous endpoint*, a *bulk endpoint* can not reserve the bandwidth for itself: all the available bandwidth is shared with all the other devices present on the same host, even if connected to other ports. For this reason, when a CELERA is connected to one USB3 port, it is not recommended to connect other USB devices, such as USB drives or Webcams, to the same host. When a CELERA camera is connected as *bulk endpoint*, frame loss phenomena will occur when other devices will be operated.

2.5.3 USB 3.2 Gen 1x1 controller cards

Since each host controller performs better or with *isochronous* or *bulk endpoints*, it is recommended to make extensive testings to determine the best controller-endpoint configuration. This is especially true if you want to reach the maximum speed. To exploit the maximum achievable performance of the USB 3.2 Gen 1x1 controller, start with a low bandwidth limit (Section 10.3.6), e.g. 16 KiB, and start the acquisition. If no error is raised, stop the acquisition, increase the limit and repeat. If the controller is not able to support the selected bandwidth, a pop-up may appear or the application will freeze. To recover from this condition, unplug the USB cable from the camera and reconnect it. The maximum achievable bandwidth is the higher selected which raised no errors.

2.6 INSTALLATION REQUIREMENTS

For proper CELERA performance, the controlling PC must meet the minimum requirements listed in Table 2.13 for single camera applications and in Table 2.14 for multi camera applications.

CPU	Intel Core i5 or AMD Ryzen 5
RAM	8 GB
Operating System	Windows 7/8/10, Ubuntu 20.04
USB 3.2 Gen 1x1 Controller	Based on Fresco Logic FL1100EX host or similar, plugged in a PCI Express 2.0 slot

Table 2.13: Minimum system requirements for single camera applications

CPU	Intel Core i7 or AMD Ryzen 7
RAM	16 GB
Operating System	Windows 7/8/10, Ubuntu 20.04
USB 3.2 Gen 1x1 Controller	Based on Fresco Logic FL1100EX host or similar, plugged in a PCI Express 2.0 slot

Table 2.14: Minimum system requirements for multi-camera applications

For further information on recommended USB host controllers, refer to Section 5.1.2.

In some operating conditions, the USB 3.2 Gen 1x1 data originated by CELERA may reach $3.2 \, \text{Gbit/s}$. PCI slots hosting USB $3.2 \, \text{Gen} \, 1x1$ controllers must be able to support PCI Express $2.0 \, \text{or}$ higher in order to sustain the required throughput; insufficient PCI bandwidth may limit camera performance (see also Section 5.1). The camera case allows using USB $3.2 \, \text{Gen} \, 1x1$ cables with screw-lock connector; it is highly recommended to adopt them in the presence of shocks and vibrations that may affect the USB connection to the computer.

2.7 MAESTROUSB3 SDK

The CELERA family is supported by MaestroUSB3, a user-friendly software development system allowing quick code development for the MS Visual BASIC .NET/C++/C#. C++ development under Linux-based operating systems is supported through the Linux SDK. MaestroUSB3 is provided, for free use,

upon purchase of CELERA cameras. Refer to the software manual available along with MaestroUSB3 SDK for a full description of the development system, the installation procedures, software functions and source code examples.

Note

All code examples in this document are written in C#.

2.7.1 Software License

CELERA customers are granted free use of MaestroUSB3. For details about usage conditions, refer to the license agreement contained within the SDK and submitted for approval during installation.

2.8 SAFETY AND PRECAUTIONS

Electric shock hazard

Unapproved power supplies may cause electric shock. Serious injury or even death may occur. Computer equipment connected to the camera must meet the Safety Extra Low Voltage (SELV) and Limited Power Source (LPS) requirements.

Powered HUBs connected between the PC and the camera must meet the Safety Extra Low Voltage (SELV) and Limited Power Source (LPS) requirements as well.

All other equipment connected to the triggers or other ports must also have double insulation/reinforced isolation protection from the mains supply and its power supply must meet the Safety Extra Low Voltage (SELV) and Limited Power Source (LPS) requirements.

Remember that the camera case is made of conductive aluminum. Always check your mounting and avoid it to get in contact with wires or surfaces at dangerous electric potential.

Do NOT touch the camera with wet hands. Doing so may cause electric shock.

Fire hazard

Unapproved power supplies may cause fire and burns. Serious injury or even death may occur. Computer equipment connected to the camera must meet the Limited Power Source (LPS) requirements.

Powered HUBs connected between the PC and the camera must meet the Safety Extra Low Voltage (SELV) and Limited Power Source (LPS) requirements as well.

Foreign matter e.g. liquid, flammable or metallic materials may cause fire if inserted into camera during operations.

The camera housing can become very hot during operation. Do not operate the camera without lens or out of the recommended ambient temperature range. Always ensure a good airflow to cool down the camera housing. Read carefully Section 3.6.

Cautions

Do not expose the camera to X-rays. Exposition to X-rays may permanently damage the camera sensor. This kind of damage is not covered by warranty.

Never expose the sensor to laser sources or high-energy light. A constant exposure to light levels exceeding sensor saturation capability may lead to sensor irreversible failure.

Do not remove the camera's label. If the serial number can't be retrieved neither from camera registers nor from the label, the warranty is void.

Do not open the camera housing. There are no user serviceable parts inside. Internal components may be damaged by touching them. The warranty is void if seals are broken.

Use only the recommended 12-pin Hirose plug for I/O interface. Camera connector can be damaged by plugs with different number of pins. Preassembled cables of different lengths are available as an option and can ease camera connections (see Section 2.3).

An incorrect electric connection or pin assignment may severely damage the camera.

CELERA is designed to fit only USB 3.2 Gen 1x1 Micro-B connectors. Any other type of plugs may compromise the port connectivity.

Camera operating voltage is 5 VDC (directly powered through the USB connection). Camera must be supplied only with USB 3.2 Gen 1x1 compliant sources.

Disassemble, drop, try to repair or alter your CELERA Camera in any way may damage it and possibly cause electric shocks. Keep unsupervised children far from the device.

Should any liquid (like water, beverages or chemical substances) flow into the camera, STOP using it IMMEDIATELY and ask your distributor or Alkeria SRL for technical support.

Store your CELERA Camera with the lens opening covered to avoid dust contamination.

During operations, the temperature of the camera case should be kept in the 0-50 °C range.

3

Hardware Description

3.1 SENSORS

CELERA cameras employ last-generation CMOS sensors manufactured by AMS and SONY. Please refer to the table above (see Section 2.1.1) to identify the sensor used in each camera model, indicating the resolution and size of the pixel cell.

3.1.1 AMS CMV Sensors

3.1.1.1 Monochrome Spectral response

The graph in Figure 3.1 shows the quantum efficiency of the sensors used in CELERA cameras equipped with AMS CMV sensors. The graph refers to the sensors used in Monochrome and NIR versions.

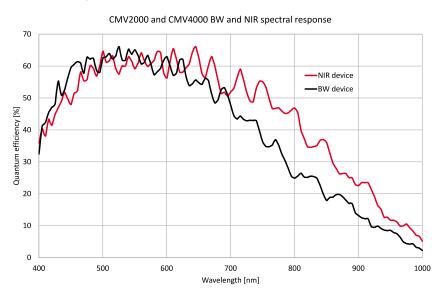


Figure 3.1: Quantum efficiency for AMS CMV BW and NIR sensors – Source: AMS

3.1.1.2 Color Spectral response

AMS CMV sensors discriminate colors using the Bayer filter, making each pixel sensitive to one of the primary colors only.

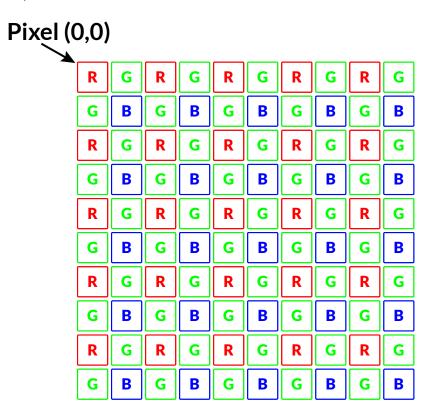


Figure 3.2: BAYER filter pattern

The graph in Figure 3.3 shows the quantum efficiency of the AMS CMV sensors.

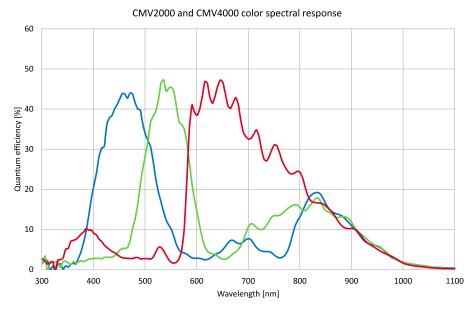


Figure 3.3: Quantum efficiency for AMS CMV Color sensors - Source: AMS

3.1.2 SONY IMX Sensors

3.1.2.1 Monochrome Spectral response

The graph in Figure 3.4 shows the quantum efficiency of the sensors used in CELERA cameras equipped with SONY IMX sensors. The graph refers to the sensors used in Monochrome cameras.

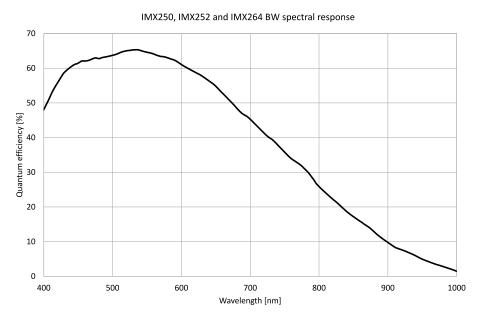


Figure 3.4: Quantum efficiency for SONY IMX BW sensors - Source: SONY

3.1.2.2 Color Spectral response

SONY IMX sensors discriminate colors using the Bayer filter, making each pixel sensitive to one of the primary colors only. The graph in Figure 3.5 refers to SONY IMX Color sensors.

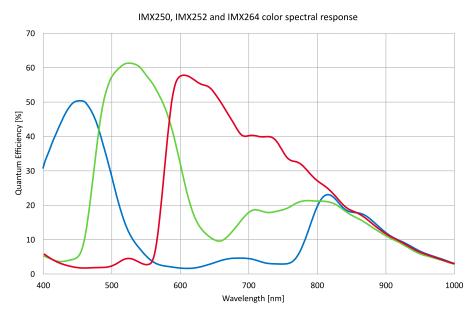


Figure 3.5: Quantum efficiency for SONY IMX Color sensors - Source: SONY

3.2 FILTERS

CELERA color camera models are equipped with Infrared cut-off filters to reduce unwanted camera sensitivity in the near infrared spectrum.

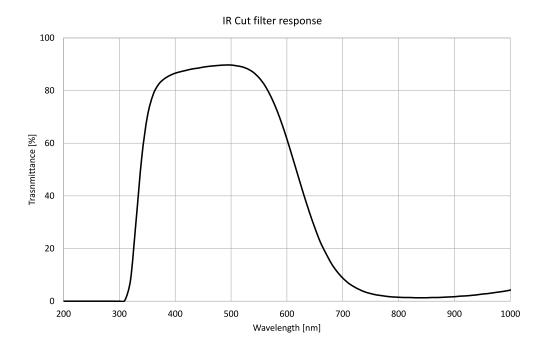


Figure 3.6: CELERA IR Cut filter response - Source: Hoya Candeo Optronics Corporation.

CELERA monochrome models are equipped with transparent protective glass with the properties reported in Table 3.1.

Туре	Anti-reflective
Material	Schott B 270 © i
Thickness	$1\pm \text{0.05}\text{mm}$

Table 3.1: Protection glass characteristics

3.3 MECHANICAL DESCRIPTION

The housing of CELERA cameras is made of black anodized aluminum alloy, using high precision machining. It is provided with four fixing front holes (M4), intended for custom lens or lens adapter connection, and two M4 holes at each side of the camera, for connecting to the mount, as shown by the drawings in Figure 3.7 and Figure 3.8. When designing the bracket that will support your CELERA, refer to the reference planes (marked as A, B and C); using these reference planes will allow to achieve a precise positioning of the devices with significant repeatability. When the lens is mounted, the camera housing conforms to protection class IP30.

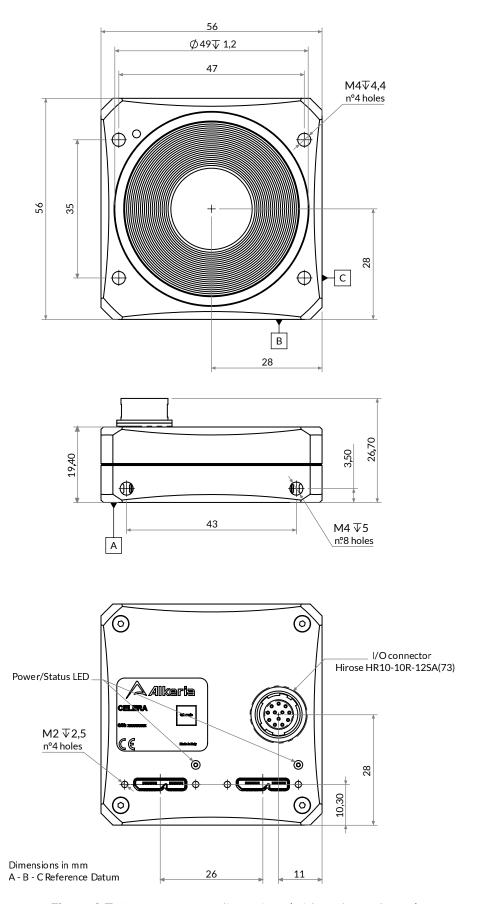


Figure 3.7: CELERA camera dimensions (without lens adapter)

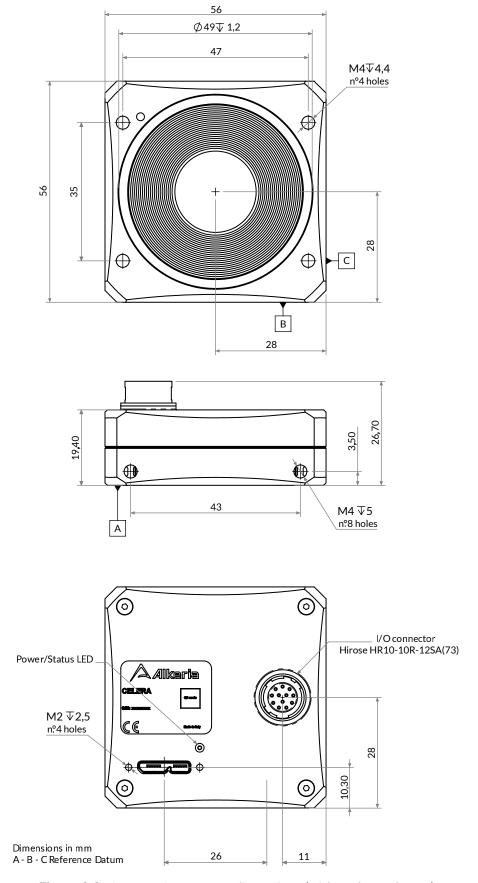


Figure 3.8: CELERA One camera dimensions (without lens adapter)

3.4 ADAPTERS FOR STANDARD LENS

CELERA family has some adapters available (described below) which allow using standard lens. The housing of CELERA cameras also allows you to easily build your own adapters for custom optical lens, to achieve the performance, economy and precision level required even by the most demanding application.

3.4.1 C-Mount adapter

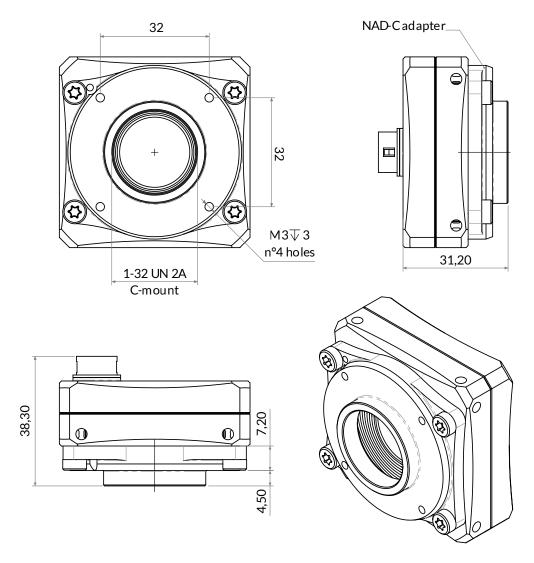
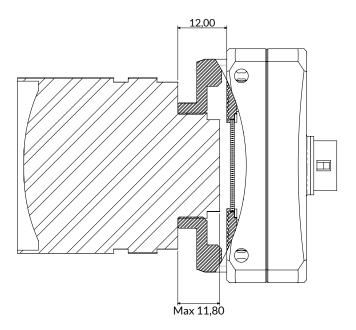


Figure 3.9: NAD-C C-Mount mechanical drawings

The NAD-C adapter, provided by default, allows interfacing CELERA camera models with standard C-mount lenses. CELERA cameras come with NAD-C adapter already assembled. If you need to disassemble it, just unscrew the four M4 hex front screws. This operation should be performed in a clean and dust-free environment. To reconnect the adapter, simply align it to the front holes of the camera and tighten the four M4 hex screws supplied with it.

Warning

The <u>maximum</u> tightening torque for screws is 2.0 N m. Exceeding the maximum tightening torque may damage the camera.


Caution

Do not contaminate the sensitive area of the camera. Avoid exposing optical parts to dust and dirt during handling operations; always operate in a clean working area, as dry as possible and free from dust. For best results, keep the camera facing downwards during operations.

3.4.1.1 Maximum lens protrusion

Maximum protrusion for a lens is the distance from the front surface of the sensor to the mounting surface of lens flange. NAD-C C-Mount adapter allows to install <u>only</u> lens with maximum protrusion of 11.80 mm.

Figure 3.10: Maximum protrusion for C-Mount type lens

Warning

Mounting a lens with a protrusion longer that the maximum admitted value may seriously damage your CELERA camera and your lens.

3.4.2 F-Mount adapter

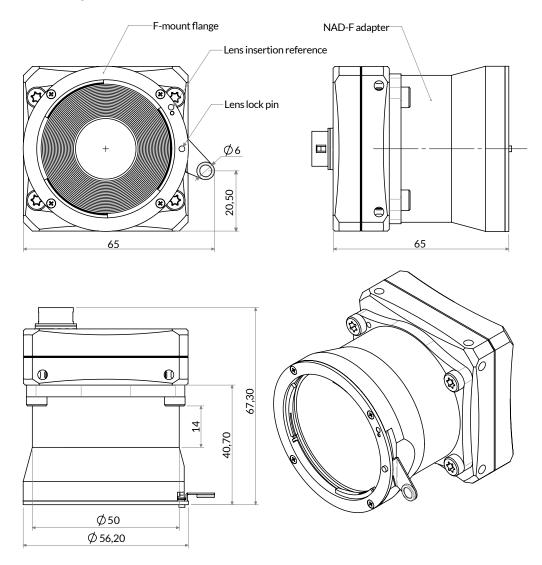


Figure 3.11: NAD-F F-Mount mechanical drawings

The NAD-F adapter allows interfacing any CELERA camera models with standard F-mount lenses. To connect the adapter, simply align the NAD-F adapter to the front holes of the camera and tighten the four M4 hex screws supplied with it.

Warning

The <u>maximum</u> tightening torque for screws is 2.0 N m. Exceeding the maximum tightening torque may damage the camera.

Caution

Do not contaminate the sensitive area of the camera! Avoid exposing optical parts to dust and dirt during handling operations; always operate in a clean working area, as dry as possible and free from dust. For best results, keep the camera facing downwards during operations.

3.5 FLANGE FOCAL DISTANCE

The distance from the mounting flange to the sensor surface is called *flange focal distance*.

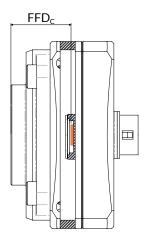


Figure 3.12: CELERA camera equipped with C-Mount

CELERA camera equipped with C-Mount adapter has a nominal flange focal distance FFD_C of 17.526 mm.

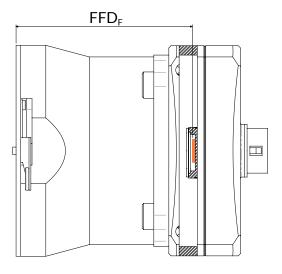


Figure 3.13: CELERA camera equipped with F-Mount

CELERA camera equipped with F-Mount adapter has a nominal flange focal distance FFD_F of 46.5 mm.

3.6 HANDLING PRECAUTIONS

The optical parts of CELERA cameras are assembled in a clean environment and the camera lens mount is factory sealed using a protective film, preserving optical parts from being contaminated by dust. Remove the seal only just before connecting the lens. Never leave the mount hole uncapped. Perform the required operations quickly and without hesitation, keeping the camera facing downwards. It is recommended to carry out all the operations that may contaminate the optical parts (like removing the protective seal) in an appropriate environment, free from dust and humidity.

3.6.1 Temperature and humidity

	Min	Max	Notes
Housing temperature during operation	0°C	50°C	
Ambiental humidity during operation	20%	80%	Relative, non-condensing
Storage temperature	−15 °C	80°C	
Storage humidity	20 %	80%	Relative, non-condensing

Table 3.2: Ambiental requirements

During operations, the case of the camera must remain below 50 °C. Otherwise sensitivity, linearity, dynamics and signal/noise ratio may be degraded.

3.6.2 Warranty limitations

Removing the label, opening or mishandling the camera will void its warranty.

3.6.3 Mechanical stress

CELERA cameras are made using high-precision machining, taking care of sensitive parts positioning. To maintain such accuracy is mandatory to avoid shock and stress that can deform reference surfaces. CELERA connector can host cables with screws or locking systems; it is highly recommended to use these cables when CELERA is exposed to shocks, vibrations or harsh environments.

3.6.4 Heat dissipation

It is very important to provide good heat dissipation in order to maintain the camera housing temperature as low as possible. Operating the camera at high temperature may impact negatively on image quality and may shorten camera life.

Warning

The camera housing may overheat during acquisition. Without proper heat dissipation image quality may be degraded and, in extreme environmental conditions, damage to the camera may occur. Never exceed the specified temperature limit during operation.

Since each installation is different, the following recommendations must be regarded to as a starting

point for a correct thermal management, keeping in mind that these general guidelines must be customized by an experienced technician.

- Make sure a lens is always mounted on the camera. The lens acts as a heatsink and contributes
 to keep the system temperature low. The bigger the lens, the best it will work in keeping your
 camera cool. If your lens is not directly connected to the camera, always mount the camera on an
 aluminum or copper block in order to enlarge the radiating surface.
- Always monitor the camera housing temperature during the design phase of your project and keep an adequate safety margin in order to be sure that the case temperature will never exceed the maximum specified, even in worst environmental conditions.
- Provide adequate heat dissipation by mounting the camera on a wide thermally conductive surface that can act as heatsink and use a fan in order to provide forced air flow over the camera.
- Grant enough air circulation between camera and other system components, especially hot ones.
- Do not cover the camera case with thermally insulant materials like plastics films or cases.

3.6.5 Monitoring internal temperature

During continuous acquisition, CELERA temperature keeps rising until a steady temperature state is reached. CELERA provides internal temperature reading through an integrated sensor. Depending on the airflow, the internal temperature may be 10 °C to 20 °C higher than the housing. Continuous monitoring of the internal temperature is recommended to guarantee that camera is performing correctly. Actions must be taken if the internal temperature rises above 70 °C. Refer to Section 10.3.2 to know more about reading main board temperature using the CELERA viewer. Moreover, you can implement temperature monitoring by yourself using the following code:

Example Code 3.1 | Temperature Monitoring

```
// Read the current temperature
float temp = device.Temperature;
// Retrieve the temperature measurement unit
UnitInfo unit = device.GetFeatureUnitInfo(Feature.Temperature);
MessageBox.Show(String.Format("Temperature: {0} {1}", temp, unit.Unit.ToString()));
```

3.6.6 Automatic internal temperature safety mechanism

An automatic temperature monitoring mechanism, shown in Figure 3.14, has been implemented in CEL-ERA cameras. The current temperature status can be retrieved reading the OverTemperatureStatus property. Three statuses are defined:

- **Normal**: Temperature is below 70 °C. The camera is working within the safe operation area and standard functionality is guaranteed.
- **Warning**: Temperature exceeded 70 °C. The camera is still able to acquire images but the temperature is very high and near to the upper operating limit. Working in this limit condition is definitely not recommended. To return in *Normal* status the camera temperature must fall below 65 °C.

• **Fault**: Temperature exceeded the 80 °C operative limit and the image acquisition was suspended to reduce the temperature below the fault threshold. The acquisition can be resumed only when the temperature is less than 75 °C.

Figure 3.14: Temperature status transition

Software temperature monitoring thread may be activated using OverTemperatureMonitorEnable property. When the temperature monitoring thread is active, the OverTemperatureStatusChanged event is fired every time the OverTemperatureStatus changes. The following code shows how to register on the event and activate the thread:

Example Code 3.2 | Temperature Change Event

```
device.OverTemperatureStatusChanged += delegate(object o, EventArgs a)
{
String msg = String.Format("Status: {0}", device.OverTemperatureStatus);
MessageBox.Show(msg);
};
device.OverTemperatureMonitorEnable = true;
```

3.6.7 EMI/ESD precautions: noise and electrostatic discharge

CELERA cameras are typically used in industrial environments, where many devices may generate electromagnetic interference and electrostatic discharge. Although CELERA cameras are designed to be extremely resistant to perturbations from the external environment, strong EMI and ESD transients may cause unwanted behavior, such as false triggering and defects in an acquired image. Those issues can be fixed by adopting good practice in the harness and cable routing. To reduce EMI and ESD, it is therefore essential to take some good general precautions when connecting the equipments:

- Install the camera as far as possible from high current loads such as motors or solenoids, especially if powered by a switching power supply.
- Use cables with double shielding and keep them as short as possible. Keep the contact area always clean and protected from dust.
- Separate power cables from signal cables. Avoid power cables running parallel to signal ones. This recommendation applies both to camera cables and to any other cable used in the equipment.

- Pay attention to the ground connections: they must be implemented through a single reference node, avoiding ground loops. Keeping your system powered from a single outlet will greatly reduce ground loop related problems.
- Install the camera far away from devices generating sparks or strong electromagnetic fields, such as, for example, large transformers, welding machines and electric motors.

3.7 CLEANING CELERA CAMERA

Each CELERA camera is carefully cleaned and checked before shipment. Nevertheless, using the camera in unclean environments may let dust enter the optical path. Since cleaning procedures require time and care and can be performed by trained personnel only, the best way of keeping your camera clean is avoiding extraneous matters enter the camera. Improper cleaning procedures may damage camera components. Contact Alkeria SRL if you are not familiar with the procedures described below. Any damage to sensor, filter, protection glass and camera housing occurred during cleaning procedures is not covered by Alkeria SRL warranty.

3.7.1 Before starting

Risk of electric shock

Disconnect USB cable from the camera.

Disconnect the I/O cable, if present.

Wear ESD-safe clothes and operate in an ESD-safe environment to avoid damaging the camera (never use synthetic clothes or insulating chairs).

Discharge yourself by touching a conductive grounded surface before handling the camera.

3.7.2 Cleaning CELERA camera housing

- Keep lens mount hole sealed (using a lens or a proper cover) when cleaning camera housing.
- Use only a soft, dry cloth.
- In case of persistent spots, use a soft cloth with few drops of optical grade cleanser or neutral detergent, then dry quickly.
- Never use cleansers such as gasoline, spirits or solvents. Aggressive products may damage the camera housing surface.

3.7.3 Optical path cleaning

- Perform the cleaning procedure of any optical component in a dust-free clean environment.
- Avoid directly touching optical parts with bare fingers. Wear clean-room grade latex or nitrile powder-free gloves.

- Avoid touching any optical surface with rough materials.
- Use only optical grade wipes, not to leave dirt residues and to scratch the glass. Never use commercial grade cotton swabs.
- Use only low residue optical grade cleansers, this avoids haloes over the glass.

3.7.4 Impurities

Before cleaning any parts, it is crucial to understand where impurities are located. You can distinguish particles on the lens, filter or on the sensor by looking at live images on your player. To help identifying any impurity in the optical path, it is recommended to set the smallest aperture by rotating the lens dial (larger values correspond to small apertures). Point the camera to a homogeneous bright target to highlight possible impurities artifacts. Impurities on the sensor appear as dark well-focused spots that remain still while you move the camera respect to the subject (refer to Figure 3.16). Particles located on the filter surface look blurred, regardless of the lens focus, and remain still even when rotating the lens (refer to Figure 3.15). Dust on the lens looks blurred and rotates together with the lens.

Figure 3.15: Example of lens or filter impurities

Figure 3.16: Example of sensor impurities

3.7.5 Filter cleaning

Keep camera facing downwards when removing lens, lens adapter or dust cap. This prevents dust from collecting on the filter surface.

For a better access to the sensor filter, it is recommended to remove the lens adapter.

Use a lens blower to remove impurities from the filter surface and the lens adapter. Reassemble the optical components and repeat the acquiring procedure. For a perfect result, it might be necessary to repeat the above procedure a few times.

If spots are still present, it may be necessary to mechanically clean the filter, following the procedure below:

- apply a small amount of cleaning liquid to a new lens cleaning wipe,
- wipe the filter surface in a delicate circular motion from the center to the sides to move impurities out of the sensor field of view,
- repeat cleaning motion until all impurities are removed.

If you are not satisfied with your cleaning results, please contact rma@alkeria.com to arrange the camera return procedure (refer to Section 12.1).

Warning

Improper cleaning procedure may lead to filter surface scratches. If you are not familiar with glass cleaning technique please contact rma@alkeria.com to arrange the camera return procedure (refer to Section 12.1).

3.7.6 Sensor cleaning

Installing the camera according to the recommended procedures makes unlikely sensor contamination.

Warning

The sensor protection glass cannot be accessed anyhow without opening the camera housing. Doing it by yourself will void the camera warranty.

If you think your camera sensor needs to be cleaned, contact rma@alkeria.com to arrange the camera return procedure (refer to Section 12.1).

3.7.7 Using compressed air

Alkeria SRL does not recommend cleaning methods involving compressed air. This kind of procedure may lead to various damage.

• High pressure air flow may push dust into the camera instead of removing it. Optical components may be permanently damaged and the sensor surface may be contaminated.

• Non-optical grade compressing systems may release oil vapor or moisture into the airflow. This contamination may damage the sensor or the camera and it could be very difficult to remove even for a trained operator.

If compressed air is used (never exceed 4 bar) you should choose optic-approved air compressor with anti-static ionizer and adopt filters to remove moisture and oil from the airflow.

3.7.8 After cleaning procedure

Risk of electric shock

Before reconnecting the plugs, be sure that cleaning materials have evaporated.

If any liquid has penetrated the camera housing, contact Alkeria SRL before plugging any connector (see Section 12.1).

Interfacing To The World

CELERA features a robust circular I/O connector (Hirose p/n HR10-10R-12SA (73)) interfacing to external signals. The I/O connector provides two input lines, two output lines and a programmable I/O line; all lines support both differential and single-ended signaling according to the RS-422, RS-644 and LV-TTL/LV-CMOS standards. The I/O connector is located on the back of the camera as indicated in the following figure:

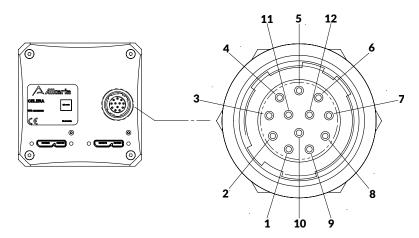


Figure 4.1: CELERA I/O Connector

Pin	Name	Function
1	P0-	Bidirectional port, negative input
2	P0+	Bidirectional port, positive input
3	P1-	Input port, negative input
4	P1+	Input port, positive input
5	GND	Ground
6	DC Out	3.3 Vdc, 400 mA source max
7	P3-	Output port, negative output
8	P3+	Output port, positive output
9	P2-	Input port, negative input
10	P2+	Input port, positive input
11	P4-	Output port, negative output
12	P4+	Output port, positive output

Table 4.1: I/O Connector Pinout

The I/O ports are disabled at power-on, to disconnect any external load and user termination whose power consumption may exceed the USB 3.2 Gen 1x1 standard requirements during the bus recognition and enumeration phase. The I/O ports are automatically enabled at the end of the USB enumeration phase.

4.1 I/O CABLE

The CELERA I/O connector can host a cable to interface the camera to the world. Standard interface cables can be provided as optional accessories (refer to Section 2.3); they are made of five signal pairs, a power pair and an additional global braid shielding. The cable shielding is connected to the CELERA aluminum case and to the protective earth of the controlling computer (through the USB cable). One end of the I/O cable features a Hirose connector (mod. HR10A-10P-12P) for connecting to CELERA, the other end is left open for connecting to external devices. The wire insulating material in the cable is either solid color or striped lengthwise in two colors, according to the DIN47100 standard. Refer to the table below for a detailed description:

Pin	Name	DIN47100 color		Pin	Name	DIN47100 color	
1	P0-	White		7	P3-	Blue	
2	P0+	Brown		8	P3+	Red	
3	P1-	Green		9	P2-	Black	
4	P1+	Yellow		10	P2+	Purple	
5	GND	Grey		11	P4-	Grey/Pink	
6	DC Out	Pink		12	P4+	Red/Blue	

Table 4.2: DIN47100 I/O cable color coding

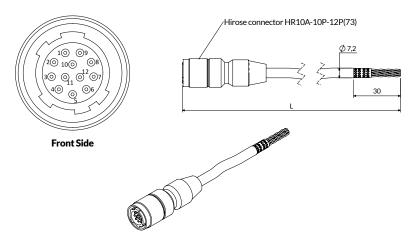


Figure 4.2: NIO-L I/O cable internal structure

If you need to build your own I/O cables, please use a good cable featuring a braid whose shielding coefficient is greater than 85 %, and connect the external braid shielding to the connector body. The maximum allowed length for the I/O cable is 10 m; it is recommended to use the shortest cable allowed by your application, see Section 2.3 for the available lengths.

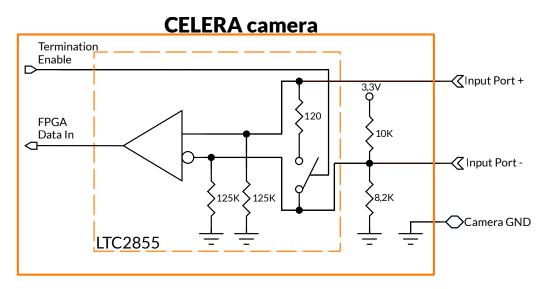
Caution

Using cables not properly assembled may damage both the camera and connected devices.

4.2 I/O MODULE

The signals available through the I/O connector natively support the RS-422 differential signaling and can also be used in RS-644 and LV-TTL/LV-CMOS. The CELERA family uses differential transceivers (p/n LTC2855, manufactured by Linear Technology); to access any data not shown below, refer to the manufacturer's datasheet.

4.2.1 Input module structure


Figure 4.3 shows the internal structure of a CELERA input module. An input internal termination can be enabled by software, replacing external end-of-line termination resistors; the input also features a voltage divider polarizing the "-" input to support single ended signaling (see Section 4.2.1.5).

Warning

To ensure proper operation of the input circuit, the reference ground related to input signals must be connected to the camera as well.

Figure 4.3: CELERA input port internal structure

4.2.1.1 Debouncing module

Each CELERA input line can feed a debouncing module to filter the input signal: enabling the debouncing module allows capturing stable signals with no spurious pulses when input signal suffers from electrical noise (e.g. signals generated by mechanical encoders or mechanical switches). The debouncing module waits for the input signal remaining stable for at least the user-programmed time interval (orange area in Figure 4.4); when this time is elapsed, the signal is considered valid and transferred to downstream modules.

Warning

The debouncing filter adds a delay to the signal chain, starting from the instant when it has actually become stable, as long as the selected sampling time (see Figure 4.4). The debounce time can be set between 0 (debouncing disabled) and $65\,535\,\mu s$, with a $1\,\mu s$ granularity.

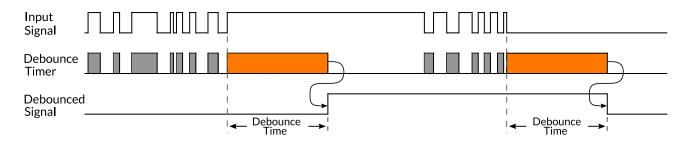
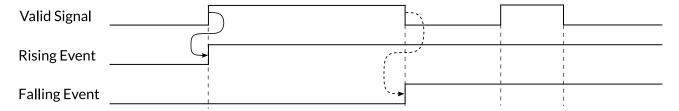


Figure 4.4: Time diagram of the debouncing filter

The debouncing module is independently available for all input lines and can be programmed with a different delay for each one of them.


Warning

When using the debouncing module, it is important to set a debounce time just longer than the maximum expected instability time of the input signal: setting shorter times might prevent filtering unwanted spurious transitions, while using longer times may cause missed detection of valid transitions.

4.2.1.2 Input events

CELERA input modules detect and log input events (raising and falling edges) occurring to any input port; the event logging allows easy detection of changes in input signals, avoiding continuous input polling. Rising and Falling events can be individually read; reading an event flag immediately resets its status. This allows you to check if any input status transition has occurred since the last event flag reading.

Figure 4.5: Input event generation and readout

The following code source reads the event flags bound to input port 1:

```
Example Code 4.1 | Input Change Event

bool riseEvent = device.PIOPorts[1].RisingEvent;
bool fallEvent = device.PIOPorts[1].FallingEvent;
```

Warning

Event flags are set at each input event; when consecutive input events of the same type (rising or falling) happen between two event flag readouts (event flag overrun), the input event latches the first event only and the following events will be lost.

4.2.1.3 RS-422

CELERA input ports natively support differential signaling according to the RS-422 standard.

If your application requires connecting multiple devices to the same RS-422 line, please use a bus topology. For example, if you want to connect a trigger signal to multiple cameras, please implement the connections as shown in Figure 4.7:

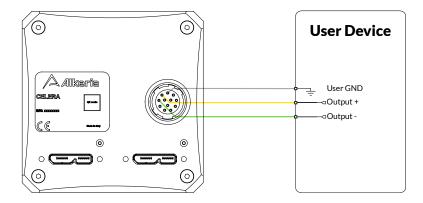


Figure 4.6: Connecting a RS-422 input signal



Figure 4.7: Connecting an output port to four input ports, terminating the last input port

Caution

AVOID other topologies (e.g. star) when connecting devices.

Warning

To ensure the electrical signal integrity on the bus, you must connect only the termination resistor (120 Ω) to the last device (on the right in the figure above). If the last device is a CELERA camera, you can simply enable its internal termination via software (see Code 4.14).

As a general guideline, the master device (driving the bus) should be at one end of the line, the cables connecting each device to the bus should be as short as possible and the termination should be present (or enabled) only for the latest slave device.

4.2.1.4 RS-644

Input modules can also support RS-644 signals.

Warning

To achieve signaling compatibility, you must **always** keep the internal input termination enabled, even if this is not the last device of the bus.

Moreover, although the RS-644 standard (like RS-422) allows a bus connection, we recommend using point-to-point connections only avoiding connecting devices other than the RS-644 transmitter and CELERA.

4.2.1.5 LV-TTL/LV-CMOS

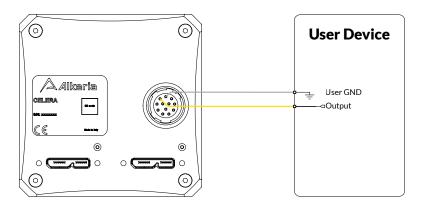


Figure 4.8: Connecting a LV-TTL signal to input port P1+

CELERA input ports natively support differential signals according to the RS-422 standard. Anyway, input modules can also support single-ended LV-CMOS and LV-TTL signals: as shown in Figure 4.8, an internal bias network keeps the "-" input line at a voltage level of about 1.5 V. A single-ended signal connected to the "+" is therefore detected as logical "1" when its level is higher than 2 V.

Warning

When an input port is connected to a LV-CMOS/TTL signal its input termination must be kept disabled; otherwise, the input signal cannot be correctly detected.

Caution

Input signals must never exceed +6 V.

4.2.2 Output module structure

CELERA output ports natively support differential signaling according to the RS-422 standard and may be used even in RS-644 and LV-TTL mode. Figure 4.9 shows the internal structure of an output port. The

Output Enable FPGA Data Out LTC2855 Camera GND

Figure 4.9: CELERA output port internal structure

CELERA family employs differential transceivers (p/n LTC2855, manufactured by Linear Technology); to access any data not shown below, refer to the manufacturer's datasheet.

Warning

To ensure proper operation of the output circuit, the camera reference ground must be connected to the slave device as well.

4.2.2.1 RS-422

CELERA output ports natively support differential signaling according to the RS-422 standard.

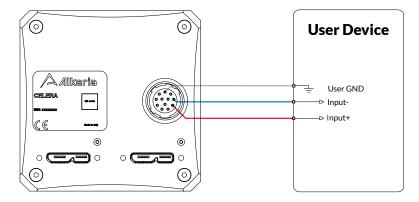


Figure 4.10: Connecting output port P3 to a RS-422 input

Warning

To ensure signal integrity on the bus it is highly recommended to use the RS-422 bus topology and keep all the bus connections to slave devices as short as possible. The master device (the CELERA camera) must be located at one end of the bus; a terminating resistor (120 Ω) must be connected only to the farthest slave at the other end of the bus (see Figure 4.7).

4.2.2.2 RS-644

CELERA outputs (supporting the RS-422 standard) may also be adapted to drive devices whose inputs follow the RS-644 standard. To make signaling compatible it is necessary to use a resistive divider, as shown in Figure 4.11, adapting the output signal level of the camera output to the RS-644 device input levels.

Warning

To ensure proper operation of the output circuit, the camera reference ground must be connected to the slave device as well.

Although the RS-644 standard allows bus topology (like RS-422), we strongly recommend using point to point connections only, avoiding connecting devices other than the CELERA camera and the RS-644 receiver.

Warning

Connecting CELERA camera outputs to an external RS-644 device inputs WITHOUT using the recommended resistive divider may seriously damage your device.

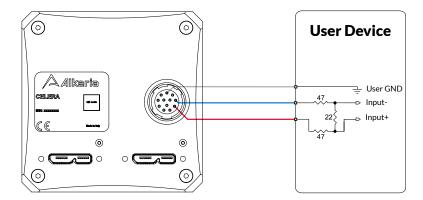


Figure 4.11: Connecting output port P3 to a RS-644 input

4.2.2.3 LV-TTL/LV-CMOS

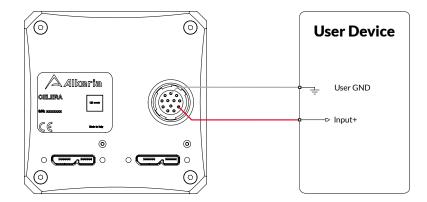


Figure 4.12: Connecting output port P3+ to a LV-TTL / LV-CMOS input

CELERA outputs can be interfaced also to LV-TTL/LV-CMOS inputs using the connections shown in Figure 4.12: the '0' logic level generated by the output driver is lower than 0.5 V, while the '1' level is about 3.3 V; both levels therefore satisfy the input requirements for both LV-TTL and LV-CMOS signaling. Please connect the P+ output for direct signaling, or P- output for inverted logic signaling.

Warning

To ensure proper operation of the output circuit, the camera reference ground must be connected to the slave device as well.

4.2.3 Bidirectional module structure (port 0)

CELERA port 0 can be software-configured either as an input or as an output. When the camera is powered on, the port is initially configured as an input (termination disabled); it can be set as an output by software. All the statements above about input and output ports, including methods to interface to signals with logic levels different from RS-422, apply also to port 0. For more information on how to configure and use the input/output port refer to the code samples in Section 4.4 and to the examples found in the MaestroUSB3 SDK.

4.2.4 I/O switching time

As reported in the I/O schematics shown in Figure 4.3 and below, CELERA cameras use RS-422 differential transceivers mod. LTC2855, made by Linear Technology. They allow very short switching time: the input propagation delay, due to the input receiver, is less than 70 ns, the output delay is less than 50 ns; both rise and fall time are less than 12.5 ns.

Warning

Input signals are usually processed by the debouncing module (see Section 4.2.1.1), which avoids false acquisitions when the input signals may contain glitches. However, the debouncing module obviously limits the input signal bandwidth: when an input signal is changing very fast, properly setting the related debouncing module, or even disabling it, may be necessary to avoid losing events.

4.3 USING INPUT SIGNALS

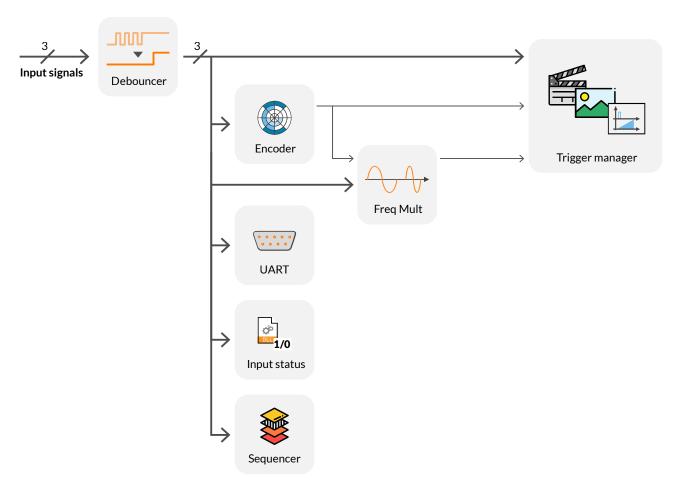


Figure 4.13: Input port internal routing

As shown in Figure 4.13, signals acquired through input ports can be routed, along with other internally

generated signals, to the internal camera processing modules; some outputs of the processing modules can be routed to the *trigger manager* module, which controls camera timing and acquisition mode.

4.3.1 Encoder module

The *encoder module* allows interfacing the camera to an external encoder; it generates a pulse (tick) for each encoder transition and updates a resettable counter tracking the current position. Phase and quadrature signals (marked as A and B in Figure 4.14 and following) can be routed to any of the three camera inputs and are fed to the *encoder module* after being filtered by the *debouncing module* (see Section 4.2.1.1).

4.3.1.1 Encoder hysteresis

The encoder module uses a threshold mechanism to ignore temporary direction reversals due to vibrations and mechanical plays. The figures above show the operation of the *encoder module*, respectively in the cases of constant rotational speed (Figure 4.14) and input jitter due to mechanical vibrations (Figure 4.15).

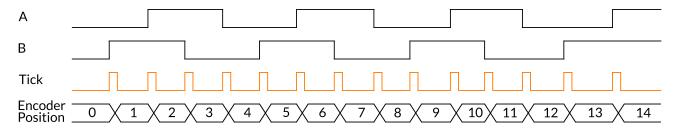
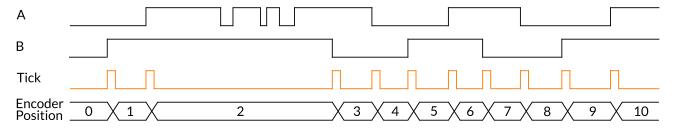



Figure 4.14: Ticks generated in normal operations

Figure 4.15: Ticks generated in the presence of jitter

4.3.1.2 Direction reversal

The IgnoreDirection property controls the behavior of the *encoder module* when an actual (permanent) direction reversal occurs: when it is set to true, the module continues generating ticks regardless of the direction of rotation (see Figure 4.16 and Figure 4.17).

As you can see, on T1 the backwards step is ignored due to the hysteresis effect. Therefore, no ticks are generated, even if the encoder continues to rotate backwards (T2) and position counter is decreased. When the encoder starts turning forward again (T3), the internal position counter will be increased again. However, ticks will be generated again only at T4, i.e. when the counter reaches the value it had just before the encoder direction inversion.

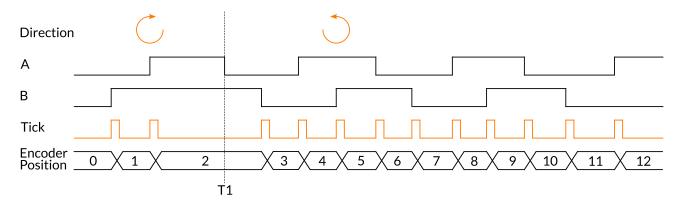


Figure 4.16: Ticks generated when ignore direction is enabled

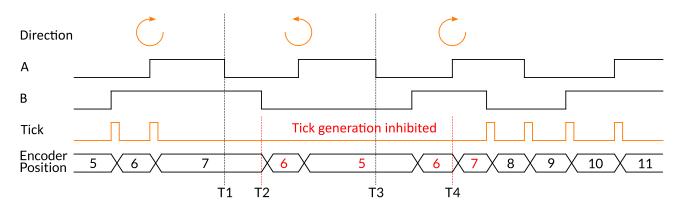


Figure 4.17: Ticks generated when ignore direction is disabled

4.3.1.3 Configuring the encoder module

The following code sets the input ports 1 and 2 as the phase (A) and quadrature (B) encoder inputs. The *encoder module* is programmed to generate a trigger only when rotating in the positive direction.

```
Example Code 4.2 | Encoder ports configuration

device.Encoder.InputA = 1;
  device.Encoder.InputB = 2;
  device.Encoder.IgnoreDirection = false;
```

4.3.1.4 Reading and resetting encoder position

The current encoder position can be read at any time as a 32-bit unsigned integer. The returned value is the last value of the *encoder module* position counter at the time of the request.

The encoder module position can be read and reset to 0 via software or with an external signal.

The following example shows how to reset encoder via software:

Example Code 4.3 | Encoder position read

Note

When the encoder position is reset, the targets of all trigger modules are automatically reset too and restart counting from 0 (see Chapter 6).

The code below configures rising edge on port 2 as encoder reset source:

Example Code 4.4 | Encoder reset with external source

4.3.2 Frequency Multiplier (Phase Locked Loop (PLL))

When you want to capture events faster or slower than the related trigger signal frequency or longer /shorter than the encoder step interval, you can use the CELERA camera internal frequency multiplier: signals coming from both I/O connector and encoder module can be processed to change the acquisition frequency. The multiplier detects the rising edges of the signal selected as a source and generates an output pulse train at the resulting frequency. The output frequency f_o is generated from the input frequency f_i according to the following formula:

$$f_o = f_i \cdot \frac{M}{D} \tag{4.1}$$

where M and D are the Multiplier and Divisor factor, respectively. The allowed frequency range for the input signal goes from 400 Hz to 4 MHz.

The maximum allowed input jitter, expressed as the maximum absolute variation of the input period, is:

$$\frac{1}{f_i \cdot M} \tag{4.2}$$

while the maximum absolute jitter of the trigger output is not greater than 21 ns.

Note

Jitter in frequency input signals or encoder rotational affects the output trigger, resulting in erratic acquisition cadence. Minimize input jitter in your application for optimum performance.

Note

To get a more stable triggering signal it is recommended to use a programmable encoder instead of PLL.

The following code selects the source for the *frequency multiplier* and the multiplying factor, enable FrameStartTrigger and set PLL as trigger source:

Example Code 4.5 | PLL configuration

The maximum and minimum allowed values for M and D can be retrieved by reading the following properties:

Example Code 4.6 | PLL boundaries readout

```
uint maxM = device.PLL.MaxMultiplier;
uint minM = device.PLL.MinMultiplier;
uint maxD = device.PLL.MaxDivisor;
uint minD = device.PLL.MinDivisor;
```

4.3.3 Trigger manager

The signal incoming from an input port can be also simply routed to the *trigger manager*. Every signal can operate on all the events listed below:

• Acquisition-start;

- Frame-start;
- End-of-exposure.

For further information refer to Chapter 6.

4.4 CONTROLLING OUTPUT PORTS

CELERA outputs can be directly controlled by software or reflect the state of internally generated signals; the latter allows to synchronize lighting systems and/or external capture devices with CELERA acquisition.

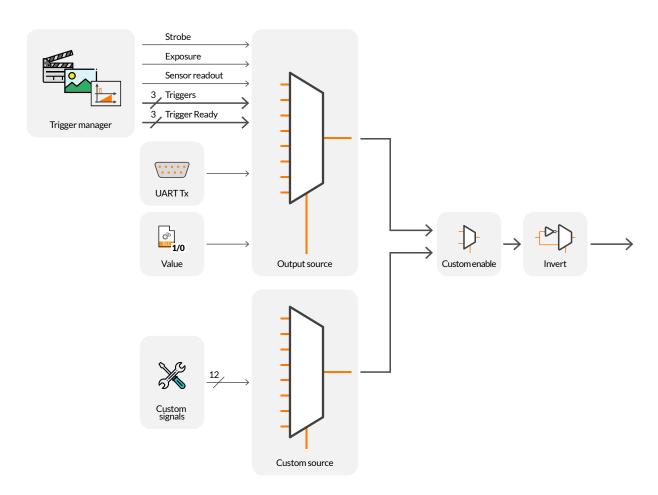


Figure 4.18: Output port internal routing

4.4.1 Polarity

The polarity of each output port can be reversed through the Invert property. This property works regardless of the output source. The following example reverses the polarity for output port 3:

```
Example Code 4.7 | Output inversion

device.PIOPorts[3].Invert = true;
```


Note

The Invert property affects output signals only. It has no effect on input signal decoding.

4.4.2 Software output

The logic level of any output port can be directly set by your application. The following code sets port 3 as a software-controlled output and sets the output level as logic '1':

Example Code 4.8 | Output controlled via software

Note

The electrical level generated at the output port is related to the state of the Invert property (see Section 4.4.1).

4.4.3 Trigger Output

Output signals generated by the *trigger manager* module can be connected to output ports. This allows synchronizing ancillary devices to the camera acquisition phases: for example, a lighting device can be synchronized to the camera exposure using the *Strobe* signal output. Next sections illustrate how these signals can be routed to output ports and how to configure them.

4.4.3.1 Exposure

The *exposure* signal is active during the exposure phase of each line capture (the time the shutter is open). The following code sets the *exposure* signal as the source for output port 3.

```
Example Code 4.9 | Exposure as P3 source
```

```
device.PIOPorts[3].Source = OutputSource.Exposure;
```

The *exposure* signal can be used to synchronize multiple CELERA devices, so that the acquisition in progress signal of the master camera can be routed as a capture trigger for slave cameras. This method is simple and effective, but it is still affected by an intrinsic delay due to I/O switching time, debouncing filters etc; if your application requires precise synchronizazion of multiple cameras, or when external non-camera devices (e.g. lighting systems) must be perfectly synchronized to the acquisition, consider using the *strobe* signal instead and the related delay mechanism, as described in 4.4.3.2.

4.4.3.2 Strobe

The *strobe* pulse can be generated by setting two programmable delays from the trigger event, for rising and falling delays. These two delays can be properly set with 1 µs resolution, according to your needs.

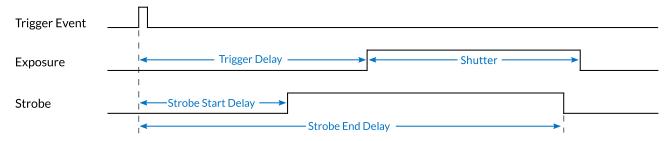


Figure 4.19: Strobe pulse

The following code configures the *strobe* signal and routes it to output port 3:

```
Example Code 4.10 | Strobe as P3 source
```

Note

The *strobe* signal is not a generalization of the *exposure* signal described in 4.4.3.1, but actually a different signal with its own use: both signals originate from the *frame start* event trigger, although they can have <u>different delays</u> with respect to it. E.g., starting from a trigger event (e.g. crossing of an encoder target position), CELERA can start an exposure with a given delay (using the *trigger manager*) and generate the *strobe* signal with a shorter delay to pre-trigger the lighting system.

4.4.3.3 Trigger

Trigger signals generated from input ports and/or internal processing modules (encoder and frequency multiplier) can be routed to output ports. Each trigger signal rises on the corresponding event trigger signal (acquisition, frame, end-of-exposure – see Chapter 6) and remains active for about 5 μ s. Like the *exposure* signal, trigger outputs allow synchronizing external devices to the camera trigger events.

Example Code 4.11 | Frame start trigger as P2 source

```
device.PIOPorts[2].Source = OutputSource.FrameStartTrigger;
```

4.4.3.4 Trigger ready

The *trigger manager* module also generates a ready signal for each trigger module (acquisition, frame, end-of-exposure – see Chapter 6), indicating that the corresponding trigger module is ready to accept a trigger signal. *Trigger ready* signals are normally high (active); they fall on the corresponding trigger event and rise again when a new trigger can be accepted. When a *trigger ready* signal is low, all the related trigger events are ignored.

Example Code 4.12 | Frame start trigger ready as P2 source

```
device.PIOPorts[2].Source = OutputSource.FrameStartTriggerReady;
```

4.4.4 Custom sources

Additional application-specific output sources can be available on some CELERA models with customized firmware.

Example Code 4.13 | Custom signal 10 as P0 source

```
device.PIOPorts[0].CustomOutputSource = 10;
device.PIOPorts[0].CustomOutputSourceEnabled = true;
```

4.4.5 Input and output ports usage examples

The following code configures CELERA port 0 (bidirectional) as an input, sets 10 µs as debounce time and enables the internal differential termination:

Example Code 4.14 | P0 configuration as input

The following code configures port 0 (bidirectional) as an output and sets level as high:

Example Code 4.15 | P0 configuration as output

```
device.PIOPorts[0].Direction = IODirection.Output; // Configure port 0 direction
device.PIOPorts[0].Value = true; // Set output high
```


4.5 SERIAL INTERFACE MODULE

CELERA cameras are equipped with a *serial interface module* to communicate with external devices. This module is able to send and receive data through dedicated FIFO buffers. Incoming data are stored in an input FIFO and can be retrieved via simple read commands issued to the camera. Output data sent through write commands are temporarily stored in an output buffer and then sent through the serial interface.

Each FIFO is 64-byte deep. If the receiving FIFO gets full before the received data are retrieved by your application, an error bit is set. This condition can be checked via the Overrun property.

The Application Programming Interface (API) provides methods to check the input buffer level and size, to set the requested baud rates and assign I/O pins to serial Tx and Rx. Hardware handshake is not supported.

Note

If your application needs serial input or serial output only, you can enable just the required pin (Tx or Rx), avoiding wasting an I/O pin for the unneeded function (see below).

Example Code 4.16 | Serial interface output configuration

In case you want to send a message whose size in bytes is greater than the output FIFO size, you should mind that the Send method is blocking, i.e. it waits until the last byte of the message has found its place in the output FIFO. To be sure that the Send method will not pause your application flow, you should always send a number of bytes lower than device. UART.TxFIFOSize and wait until the output FIFO is empty before calling the Send method.

Example Code 4.17 | Big buffer send over serial interface

```
int bytesToSend = bigBuffer.Length;
                                                // Remaining bytes to send
int srcIndex = 0;
                                                // Index to the next byte to send
uint txFifoSize = device.UART.TxFIFOSize;
                                                // This is the size of output FIFO
while (bytesToSend > 0)
                                                // While we have bytes to send
    // Allocate a temp buffer.
    byte[] buffer = new byte[Math.Min(bytesToSend, txFifoSize)];
    // Copy the data to send from the big buffer.
   Array.Copy(bigBuffer, srcIndex, buffer, 0, buffer.Length);
    // Wait for the output fifo to be empty.
   while (!device.UART.TxFIF0Empty)
        Thread.Sleep(500); // Leave CPU time to other user threads
    // Send the buffer
   device.UART.Send(buffer);
    // Update indexes and counters
    srcIndex += buffer.Length;
    bytesToSend -= buffer.Length;
}
```

Example Code 4.18 | Serial interface input configuration

5

System Setup

5.1 USB SETUP

CELERA is controlled and powered through the USB connector. When the camera is connected to the PC through one USB 3.2 Gen 1x1 hub, you must be sure that the hub directly connected to the camera uses a suitable power supply: using poor quality power supplies may degrade the performance of the camera or damage it.

For maximum performance, the controlling computer must be equipped with appropriate USB 3.2 Gen 1x1 interface (see section 5.1.2).

CELERA data throughput can reach 6.4 Gbps on two USB3 connectors; it is therefore recommended to reserve a USB 3.2 Gen 1x1 host controller for each camera connector.

If any other device must coexist with CELERA, it must not transfer data while camera is operating. CELERA can also operate with USB interfaces prior to USB 3.2 Gen 1x1. Depending on the setup, some functionality may not be available or suffer significant performance degradation.

Keep USB cable far from potential EMC interference sources (e.g. power cords and cables carrying strong impulsive currents) during installation.

Refer to Section 3.6.7 for further information.

5.1.1 How to choose a suitable USB cable

Cables must match the USB 3.2 Gen 1x1 standard in order to properly work with CELERA camera. Refer to "Universal Serial Bus 3.2 Specification" available at www.usb.org.

One of the USB greatest advantages is that it provides a 5 V power supply. Connected USB devices are usually powered through the USB cable, eliminating the need for an external power supply. Since USB is also designed for quick and easy connections/disconnections, standard connectors do not

5. System Setup 75

keep cables firmly enough to withstand the heavy vibration encountered in industrial applications.

With time, standard connectors can work themselves loose and cause malfunctioning. Loose USB cables can lead to data loss, software hang-ups and blue screens. In the wrong environment they can even lead to fire or explosion. To avoid these problems, the CELERA USB 3.2 Gen 1x1 connector can accommodate cables with screw-lock connectors. Using these cables is highly recommended especially when movements and vibrations may affect the stability of the connection between the camera and the PC.

If the cable is subjected to repeated stress, it is also recommended to adopt flexible chain-specific cables. The maximum recommended length for the USB cable is $3 \, \text{m}$. Longer distance (up to $8 \, \text{m}$) can be covered by selected high-quality cables or using USB $3.2 \, \text{Gen } 1x1 \, \text{hubs}$ or active extension cords, commercially available.

It is important to evaluate the electrical resistance of the cable power section. The power and ground wires shall comply with the aforementioned electrical requirements. Thin cables usually cause large voltage drop, limiting the required power being provided to the device. Furthermore, a good shielded cable will improve EMI/RFI performance.

5.1.2 Recommended USB interface

To get maximum performances out of Alkeria cameras, it is essential to choose the right USB3 host controller, focusing on it's maximum throughput, since the controller is responsible for the actual available bandwidth.

Not all the USB3 host controllers are capable to manage maximum data transfer rate. While choosing your USB3 host controller, please pay attention to brand, model and number of controllers available on it. For example, a 2 ports USB3 host board with single 5 Gb/s controller will NOT be suitable for running two cameras at once at maximum speed; a 4 ports USB3 host board with dual 10 Gb/s controller will be capable of running up to 4 single-USB3 cameras at maximum speed.

Recommended adapters should feature one of the following host controllers:

- Texas Instrument TUSB7340/TUSB7320, isochronous mode only (5 Gbit/s max);
- Fresco Logic FL1100EX (5 Gbit/s max);
- Integrated Intel USB 3.2 Gen 1x1 Host (10 Gbit/s max on some models).
- Asmedia ASM3142 (10 Gbit/s max).

Only Texas Instruments controllers currently achieve maximum throughput for isochronous endpoint (48 KiB per micro-frame, see Figure 2.6) and thus maximum frame rate. Fresco Logic FL100EX and Intel integrated controllers achieve maximum throughput of $375 \, \text{MB/s}$ for Bulk endpoints. Other controllers usually achieve 42 KiB to 45 KiB per micro-frame only, involving a $10 \, \%$ loss in maximum speed.

5. System Setup 76 -

Note

Trying to reach a bandwidth higher than the maximum supported by the controller usually makes the camera stop communicating correctly and may freeze the controller. When this happens, unplug and re-plug the camera to re-establish a correct communication.

Furthermore, we recommend to disable any technology that may slow down the CPU frequency and responsivity (SpeedStep and all Power Management States/C-States). These settings can be usually accessed through the BIOS/UEFI configuration utility.

When CELERA is running at maximum frame rate, its throughput saturates the bandwidth of both USB $3.2 \text{ Gen } 1x1 \text{ connections } (2 \times 3.2 \text{ Gbit/s})$. It is recommended using two independent USB 3.2 Gen 1x1 hosts (not required for CELERA One).

Low-cost USB 3.2 Gen 1x1 to PCI Express multiport adapters, as well as USB 3.2 Gen 1x1 ports built-in in some PCs, use a single controller and/or internal USB 3.2 Gen 1x1 hubs. Devices connected to adjacent ports therefore often share the same USB 3.2 Gen 1x1 controller and may interfere with proper CELERA operation.

For a correct setup, using two independent controllers is recommended as shown in Figure 5.1a. If your system does not have enough PCI express slots available, you can opt for a card with multiple hosts. If the PC motherboard is equipped with a compatible integrated USB 3.2 Gen 1x1 host controller, it can be used in combination with a PCI Express USB 3.2 Gen 1x1 host adapter as reported in Figure 5.1b. For any doubt about the choice of the host controller or PC settings, please contact Alkeria SRL technical support at support@alkeria.com.

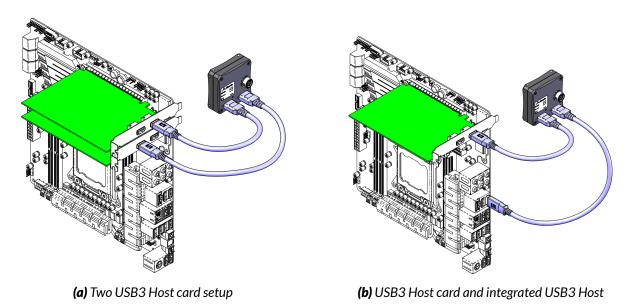


Figure 5.1: CELERA camera dual port setup

5. System Setup 77

Primary LED	Secondary LED	Status
OFF	OFF	Device not powered
RED	RED	Camera powered, waiting for driver enumeration
GREEN	OFF	Primary USB plugged and enumerated
GREEN	GREEN	Both USB plugged and enumerated
ORANGE	OFF	Camera acquiring from primary USB
ORANGE	ORANGE	Camera acquiring from primary USB
BLINKING	-	Generic error (contact support@alkeria.com)
-	BLINKING	Generic error (contact support@alkeria.com)

Table 5.1: Status LED behaviour

5.2 STATUS LED

CELERA features two status LEDs on its back, showing the operating conditions of the camera. When one or both camera connectors are plugged in, LEDs remain red until the computer detects and configures the camera, then they both turn to green. If just the main connector is plugged, the secondary LED remains off after OS enumeration. The second connector can be connected at any time. LEDs turn to orange when the camera is acquiring from the related connectors.

The following table shows the meaning of the status LEDs indications. For CELERA One please refer to primary LED only:

Different behaviours of the status LEDs may indicate that camera is malfunctioning.

5.3 WHEN ONE CELERA IS NOT ENOUGH...

You can even connect multiple CELERA cameras at the same PC and use them simultaneously: API makes it possible to balance each video data stream.

When designing the application, you can choose how the connected CELERA cameras will share the available USB 3.2 Gen 1x1 bandwidth, freely modulating acquisition rate, pixel format and Region-Of-Interest (ROI) of each CELERA based on the specific application needs. Refer to Section 8.6.6 for further details.

6Trigger

CELERA supports asynchronous triggering, which allows capturing a specified number of images, controlling exposure start and duration through configurable events called "triggers".

The modules generating trigger events are examined below. They are:

- Acquisition-start trigger;
- Frame-start trigger;
- End-of-exposure trigger.

6.1 TRIGGER SOURCES

Each trigger is supported by a special module, which can be enabled and processes one or more of the trigger sources available within the camera. Trigger sources available for CELERA are listed in Table 6.1

External	Trigger is generated on the detection of an input event. The trigger module can be activated either by the rising edge or by the high level; the input logic can also be reversed in order to detect the falling edge or the low level.
Software	Trigger is generated through the SoftwareTrigger software method.
PLL	Trigger is generated by the tick of the frequency multiplier module (see Section 4.3.2).
Encoder	Trigger is generated whenever the encoder position counter increases by a programmable number of steps (set through the EncoderInterval property).
EncoderOnce	Trigger is generated only the first time the encoder position counter reaches the value of EncoderInterval property.

Table 6.1: Trigger sources

The GetAvailableSources method, when applied to a trigger module, returns the trigger sources that can be selected for that module.

Example Code 6.1 | Get all selectable trigger sources

```
TriggerSource[] sources = trigger.GetAvailableSources();
if (Array.Exists(sources, t => t == TriggerSource.Encoder))
    trigger.Source = TriggerSource.Encoder;
```

6.2 ACQUISITION START TRIGGER

The *acquisition-start* trigger (AcquisitionStartTrigger) event enables the acquisition of a given number of frames, called a *burst*. When the module is enabled¹, the camera waits for a start acquisition trigger before starting capturing a burst.

The number of frames in a burst is set by the AcquisitionBurstLength property; when the burst is complete, the camera waits for a new start acquisition trigger, that will trigger the acquisition of the next burst.

The sources available for this module are External, Software, Encoder and EncoderOnce. When this module is disabled², the acquisition is always active.

6.3 FRAME START TRIGGER

The frame-start trigger (FrameStartTrigger) event enables the acquisition of a frame. When the module is enabled³, the camera waits for a frame start trigger before starting an exposure.

When the exposure is complete and the required ROI has been acquired, the camera waits for a new *frame-start* trigger, that will trigger the acquisition of the next frame.

The sources available for this module are External, Software, PLL and Encoder. When the module is disabled⁴, the frame start triggers are internally generated based on the value of FrameRate property.

6.4 END-OF-EXPOSURE TRIGGER

The *end-of-exposure* trigger (ExposureEndTrigger) event terminates the exposure of a frame. The only available trigger source for this module is External. When the module is disabled⁵, the duration of the exposure is controlled by the Shutter control value (see Section 8.7.8).

¹AcquisitionStartTrigger.Enabled = true

²AcquisitionStartTrigger.Enabled = false

³FrameStartTrigger.Enabled = true

⁴FrameStartTrigger.Enabled = false

⁵ExposureEndTrigger.Enabled = false

6.5 TRIGGER DELAY

Each module can delay the signaling of the trigger event for a period of time, set through the module's TriggerDelay property.

When an external signal is used as a trigger source, the delay set through TriggerDelay combines with the delay due to the debounce time set on the related input port (see Section 4.2.1.1).

Note

When encoder is not used, it is mandatory to set EncoderDelay to 0. If not, no trigger event will be raised.

For frame-start trigger, user can also set TriggerDelay when in free run. If controlling an external lightning system with Strobe, TriggerDelay can be used to compensate delay introduced by controlling-chain and time for light to reach steady-state. Following the example of Figure 4.19 a representation of the statement above is depicted in Figure 6.1

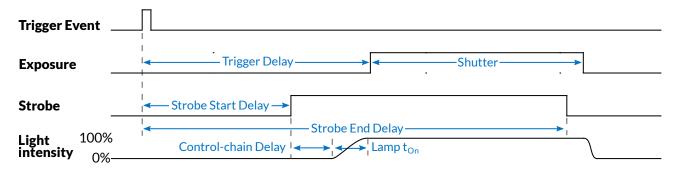


Figure 6.1: Trigger delay with external light

6.5.1 Encoder delay

Acquisition-start trigger and frame-start trigger can also delay the signaling of the trigger event for an amount of encoder steps, set through the module's EncoderDelay property.

The granularity of EncoderDelay is 1 encoder step.

When using EncoderDelay, TriggerDelay should be set to 0. If not, trigger event will be delayed by an additional TriggerDelay time after encoder required displacement.

6.5.2 Trigger overrun

Each trigger module generates its own ready signal indicating that it is able to receive a new trigger:

- AcquisitionStartTriggerReady
- FrameStartTriggerReady
- ExposureEndTriggerReady

These signals are named after the generating trigger module and can be sent to the output ports. You can also identify when the exposure is in progress by checking the exposure signal status.

A trigger module accepts an input signal only when its trigger-ready signal is active; trigger signals are otherwise ignored and increment an overrun counter. You can learn how many triggers have not been accepted by a trigger module through the TriggerErrors (read-only) property related to that trigger module.

Example Code 6.2 | Usage of the TriggerErrors property

```
if (device.FrameStartTrigger.TriggerErrors > 0)
    Debug.WriteLine("Invalid triggers detected.");
```

Figure 6.2 shows a possible timing of exposure and frame-start trigger-related signals.

The exposure begins after the specified trigger delay and a new trigger signal can be accepted only when FrameStartTriggerReady is asserted. After receiving a valid trigger, the *trigger-ready* signal goes low, indicating that the requested exposure is being processed.

The second trigger in the picture is ignored as the FrameStartTriggerReady signal is still low; the error condition is detected and increments the trigger overrun counter.

The third trigger signal is properly received and accepted as the previous exposure is already complete.

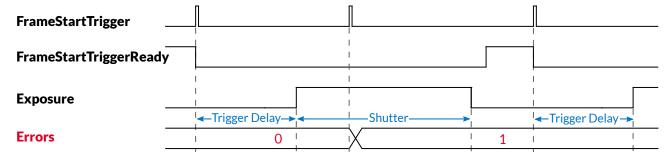
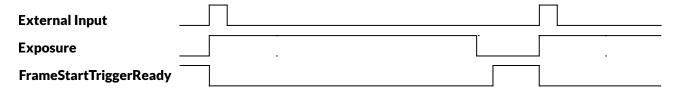


Figure 6.2: Exposure timings


6.6 TRIGGER CONFIGURATION EXAMPLE

6.6.1 External trigger frame acquisition

The following example assumes that you want to acquire a frame every time a rising edge on input port 1 is detected. Frame start trigger ready signal is routed to output port 3.

As shown in Figure 6.3, the frame-start-trigger-ready signal has to go high before the rising edge of the signal on port 1. If this constraint is not respected, the trigger will not be accepted.

Figure 6.3: External trigger frame acquisition timings

Example Code 6.3 | External trigger frame acquisition

```
device.Shutter = 1000; // Set shutter time to 1 ms
device.FrameStartTrigger.Source=TriggerSource.External; // Select the external trigger
    source
device.FrameStartTrigger.ExternalInput = 1; //Select input port 1
device.PIOPorts[1].DebounceTime = 1; // Set debounce time to 1 us
device.FrameStartTrigger.DetectExternalInputEdge = true; // Detect an edge of the
    trigger source
device.FrameStartTrigger.InvertExternalInput = false;// Choose the rising edge of the
    trigger source
device.FrameStartTrigger.Enabled = true;//Enable frame trigger
device.PIOPorts[3].Source = OutputSource.FrameStartTriggerReady;// Select output port 3
    for the trigger ready signal
```

6.6.2 Signal-driven exposure time

The following example assumes that you want to acquire a frame every time a rising edge on input port 1 is detected. The exposure will end when a falling edge is detected on the same port. Frame start trigger ready signal is routed to output port 3, while ExposureEndTriggerReady signal is routed to output port 4.

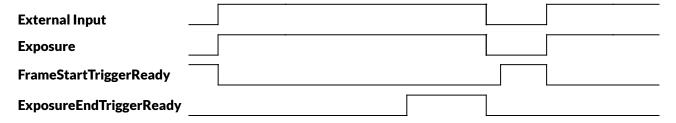


Figure 6.4: Signal-driven exposure timings

As shown in Figure 6.4, the FrameStartTriggerReady signal has to go high before the rising edge of the signal on port 1. Similarly, the ExposureEndTriggerReady signal has to go high before the falling edge of the signal on port 1. If these constraints are not respected, the triggers will not be accepted.

```
Example Code 6.4 | Signal-driven exposure time
```

```
device.PIOPorts[1].DebounceTime = 1; // Set debounce time to 1 us
device.FrameStartTrigger.Source = TriggerSource.External;
device.FrameStartTrigger.ExternalInput = 1; // Select input port 1
device.FrameStartTrigger.DetectExternalInputEdge = true;
device.FrameStartTrigger.InvertExternalInput = false; // Rising edge
device.FrameStartTrigger.Enabled = true; // Enable frame trigger
```



```
device.PIOPorts[3].Source = OutputSource.FrameStartTriggerReady; // Trigger ready
device.ExposureEndTrigger.Source = TriggerSource.External;
device.ExposureEndTrigger.ExternalInput = 1; // Select input port 1
device.ExposureEndTrigger.DetectExternalInputEdge = true;
device.ExposureEndTrigger.InvertExternalInput = true; // Falling edge
device.ExposureEndTrigger.Enabled = true; // Enable frame trigger
device.PIOPorts[4].Source = OutputSource.ExposureEndTriggerReady; // Trigger ready
```

6.6.3 Encoder synchronization

In the following example the camera acquires images of some items carried by a conveyor. The camera receives an incoming trigger signal on port 0, whose falling edge enables the acquisition of 4 frames. Each frame is acquired every 1000 steps of an encoder, whose signals are connected to ports 1 and 2.

Example Code 6.5 | Encoder synchronization

```
// Setup acquisition trigger:
// Set debounce time to 100 us
UnitInfo units = device.PIOPorts[0].DebounceTimeUnitInfo;
device.PIOPorts[0].DebounceTime = (ushort)(100e-6 / units.Factor);
// Set port 0 direction
device.PIOPorts[0].Direction = IODirection.Input;
// Enable acquisition start trigger
device.AcquisitionStartTrigger.Enabled = true;
// Set trigger source
device.AcquisitionStartTrigger.Source = TriggerSource.External;
device.AcquisitionStartTrigger.ExternalInput = 0;
// Detect falling edge
device.AcquisitionStartTrigger.InvertExternalInput = true;
device.AcquisitionStartTrigger.DetectExternalInputEdge = true;
// Set the number of frames to be acquired
device.AcquisitionBurstLength = 4;
// Setup frame trigger:
// Port 1 and 2 are input only, therefore there is no need to set port directions.
// Set debounce time to 1 us
device.PIOPorts[1].DebounceTime = (ushort)(1e-6 / units.Factor);
device.PIOPorts[2].DebounceTime = (ushort)(1e-6 / units.Factor);
// Set the encoder quadrature inputs
device.Encoder.InputA = 1;
device.Encoder.InputB = 2;
// Detect only forward movements
device.Encoder.IgnoreDirection = false;
// Enable frame trigger
device.FrameStartTrigger.Enabled = true;
// Set trigger source
device.FrameStartTrigger.Source = TriggerSource.Encoder;
// Acquire a frame every 1000 steps
device.FrameStartTrigger.EncoderInterval = 1000;
// Start acquisition
device.Acquire = true;
```


7

The processing Chain

The image processing is performed on-camera, both by the sensor and the embedded FPGA, saving computational power on your PC and making it available for the application. Refer to Section 8.7 for more information about camera controls such as white balance, digital gain, etc.

Figure 7.1 shows the FPGA image processing chain, referred to a color camera.

Figure 7.2 shows the FPGA image processing chain, referred to a monochrome camera.

7.1 LIGHT METER

CELERA evaluates the compensation parameters (white balance, luma) over an image area called *LMR* (*light meter ROI*). It is contained into the current ROI (and usually coincides with it), but it can be limited to a part of the ROI only to meet particular requirements (for example, to exclude a saturated region of the image).

The data analyzed by the *light meter* are sampled before any transformation by image processing controls such as *digital gain*, white balance, brightness, contrast and user Look-Up Table (LUT).

Specifying the Light Meter ROI (LMR) requires setting its position and size through the startX, startY, sizeX and sizeY parameters¹.

Example Code 7.1 Set LMR starting from x = 256, y = 384, and 512×800 pixels wide

device.SetLightMeterROI(256, 384, 512, 800);

¹Light meter ROI position coordinates are set with respect to the upper left point of the current ROI.

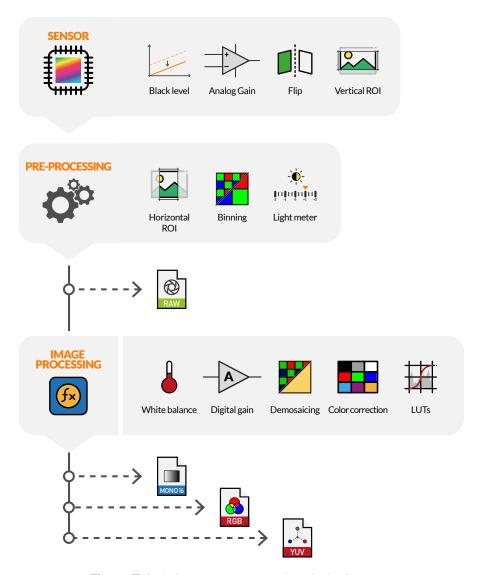
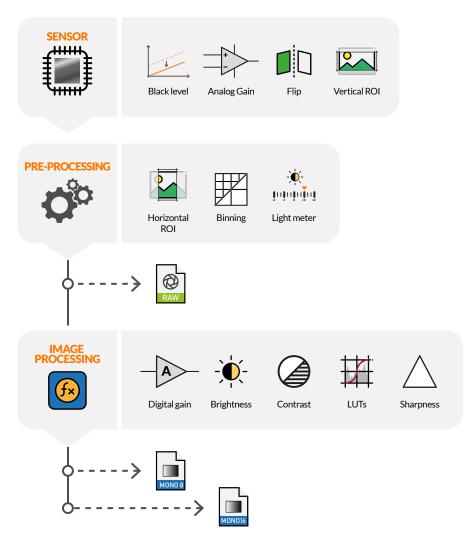


Figure 7.1: Color camera processing chain diagram

7.2 BLACK LEVEL OFFSET

The black level is the common offset exhibited by all pixels of the image sensor while not illuminated (see Section 10.6.3). It is inevitably inherent in the nature of sensitive elements and amplification chain; it is therefore important to keep it as low as possible to preserve the dynamics of the ADC and amplification chain.


CELERA CMV provides a control, accessed through the BlackLevelOffset property, acting directly on the analog section of the sensor by subtracting the offset component before the AD conversion.

```
Example Code 7.2 | Set Black Level offset correction

device.Calibration.BlackLevelOffset = 200;
```

CELERA IMX cameras feature automatic black level offset compensation. The BlackLevelOffset property is therefore not available on these models.

Figure 7.2: Monochrome camera processing chain diagram

7.3 CHUNK DATA

CELERA cameras can optionally transmit a set of additional information along with the acquired image, that can be used for debugging purposes and data analysis: a frame is identified by its serial number and time stamp; it can also be associated to the encoder position and the input status captured during its exposure.

Data are user-selectable by software methods. The bandwidth required is very small; however, it might reduce the maximum frame rate, slightly affecting the performance in some high-demanding applications.

7.3.1 Frame number

The FrameNumber field is a progressive 16-bit unsigned integer. If the acquisition-start trigger is active (see Section 6.1), the counter is reset at the acquisition startup and counts from 0 to Acquisition—BurstLength – 1, then starts over; otherwise, the counter cycles from 0 to 65535, then starts over.

Example Code 7.3 | Enable frame number chunk data field

```
device.EnableChunkData = true;
device.EnableChunkDataField(ChunkDataField.FrameNumber);
```

7.3.2 Time stamp

The TimeStamp is a 16-bit unsigned integer generated from a 1 ms timer and cleared when acquisition is started. The TimeStamp value is the value of the timer counter, as captured at the frame-start trigger event.

Example Code 7.4 | Enable time stamp chunk data field

```
device.EnableChunkData = true;
device.EnableChunkDataField(ChunkDataField.FrameTimeStamp);
```

7.3.2.1 Time stamp resolution

The timer resolution that advances the time stamp counter can be changed using the TimeStampExponent property. This property represents the unit of time expressed in power of 10, i. e. a value of -3 means $10^{-3} = 1$ ms.

A list of all possible values for the TimeStampExponent property can be retrieved using the GetAvail-ableTimeStampExponents method.

7.3.3 Encoder position

The EncoderPosition is a 32-bit unsigned value indicating the position of the encoder as captured at the frame-start trigger event.

Example Code 7.5 | Enable encoder position chunk data

```
device.EnableChunkData = true;
device.EnableChunkDataField(ChunkDataField.LineEncoderPosition32);
```

7.3.4 Input status

The InputStatus is a bitfield indicating the input status, captured at the frame-start trigger event.

Example Code 7.6 | Enable input status chunk data captured at frame-start trigger event

```
device.EnableChunkData = true;
device.EnableChunkDataField(ChunkDataField.FrameInputStatus);
```

7.3.5 Burst number

The BurstNumber field is a 16-bit progressive unsigned number. If the Acquisition-start trigger is active (see Section 6.1), the counter is incremented at each acquisition-start trigger.

Example Code 7.7 | Enable burst number chunk data field

```
device.EnableChunkData = true;
device.EnableChunkDataField(ChunkDataField.FrameBurstNumber);
```

7.3.6 Sequencer page

The SequencerPage field indicates the active sequencer page number (see Section 6.3), as captured at the frame-start trigger event.

Example Code 7.8 | Enable sequencer page chunk data field

```
device.EnableChunkData = true;
device.EnableChunkDataField(ChunkDataField.FrameSequencerPage);
```

7.3.7 Configuration example

Example Code 7.9 | Configure chunk data, capture a frame and display the relevant data

```
device.EnableChunkData = true; // Enable chunk data transmission
device.SetEnabledChunkDataFields(new ChunkDataField[] {
    ChunkDataField.FrameNumber,
    ChunkDataField.FrameTimeStamp,
    ChunkDataField.FrameEncoderPosition,
    ChunkDataField.FrameInputStatus
});
device.Acquire = true; // Start acquisition
// Wait for a frame and extract chunk data
Pair<Bitmap, ChunkData> pair = device.GetImageChunk(true);
ChunkData data = pair.Second;
Debug.WriteLine("Frame number: " + data.FrameNumber);
Debug.WriteLine("Timestamp: " + data.TimeStamp);
Debug.WriteLine("Encoder position: " + data.EncoderPosition);
```

7.4 FRAME COMBINER

CELERA features a *frame combiner* module stitching a programmable number of frames together into a larger one. The frames are stitched together vertically in their chronological order.

7.4.1 Flush and AutoFlush

When the *frame combiner* module is active, the output picture becomes available only when all the related input frames has been triggered and acquired.

When the acquisition is stopped before a whole set of frames has been acquired, you can still use the flush operation to retrieve a "partial" frame, where the missing tiles are replaced by black images.

A *flush* operation can be invoked manually or automatically (auto-flush) when a programmable time-out expires.

7.4.2 Configuration example

Example Code 7.10 | Configure chunk data, combine 10 frames, set 1 second timeout, flush operation triggered

```
device.FrameCombinerSize = 10; // Combines 10 frames into a bigger one
// If no frames are received after 1s, an auto flush operation is triggered:
// (set timeout to 0 to disable the timer)
device.FrameCombinerTimeout = 1000;
device.Acquire = true; // Start acquisition
device.FrameCombinerFlush(); // This manually triggers a flush operation
```


Capturing images

8.1 VIDEO MODES

Before starting acquiring with CELERA you must choose a *video mode*, associated with a specific configuration (ROI, pixel format, frame rate, etc.). Video modes allow selecting image resolution, region of interest (ROI) and output format.

CELERA video mode can be selected through the VideoMode property, as per the following example:

Example Code 8.1 | Select camera video mode

device.VideoMode = 1; // Set Video Mode 1

Warning

Video modes can be selected only when the camera is not acquiring.

8.1.1 Mode 0 (Normal)

Mode 0 is the most commonly used mode; it allows using all pixel formats (see Section 8.4) and makes all processing chain controls available.

8.1.2 Mode 1 (RAW)

Mode 1 allows acquiring RAW data from the sensor, with no additional processing (available pixel formats are RAW8 and RAW16 only). When in Mode 1, the processing chain is partially disabled; this mode can be used to make calculations starting from the bare raw data coming from the sensor.

8. Capturing images

8.1.3 Mode 2 (Subsampling)

In *Mode 2* CELERA color cameras convert the RAW frame in an RGB subsampled frame, with both width and height halved. Each 2x2 pixel group is converted in an RGB tuple in the following way:

$$R' = R \tag{8.1}$$

$$G' = \frac{G_R + G_B}{2} \tag{8.2}$$

$$B' = B \tag{8.3}$$

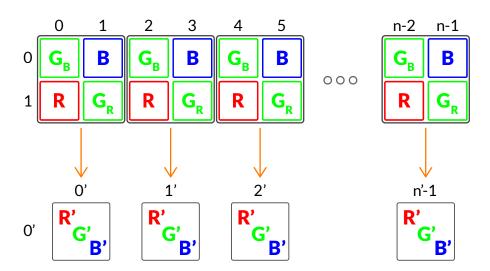


Figure 8.1: Mode 2 subsampling

8.2 REGION OF INTEREST (ROI)

If you don't need to acquire the whole sensor image, you can get just part of it setting a ROI. This may save the time required to transfer the unnecessary parts of the image possibly increasing the resulting frame rate.

A ROI is defined by programming the requested number of rows and columns and the starting position (setting the image ImageStartX, ImageStartY, ImageSizeX and ImageSizeY parameters as shown below):

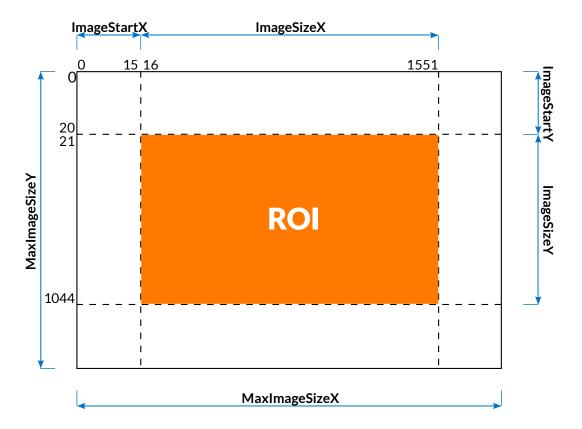


Figure 8.2: ROI description

Example Code 8.2 | ROI configuring example

```
// Ensures that ROI start position plus size does not exceed max sensor area
device.ImageStartX = 0;
device.ImageStartY = 0;
// Set ROI size
device.ImageSizeX = 1536;
device.ImageStartX = 16;
// Set ROI starting position
device.ImageSizeY = 1024;
device.ImageStartY = 21;
```


Warning

ROI parameters can be set only when camera is not acquiring.

Note

To avoid errors, please care that ImageStartX + ImageSizeX does not exceed MaxImageSizeX. The same applies also to ImageStartY and Image—SizeY.

Note

Changing ROI parameters involves automatic recomputing of the *packet size* boundaries (see Section 8.6.4).

8.3 BINNING

CELERA camera has the ability to digitally sum two or more adjacent pixels into one pixel. This procedure increases the sensor response in cases of low lighting. Binning is a digital aggregation that is applied after the analog to digital conversion. Please refer to Section 2.1.1 for further information about available binning modes.

Two types of binning are available: vertical binning and horizontal binning.

The vertical binning mode combines the values of adjacent pixels on the same column (see 8.3), and the vertical size of the acquired image is then reduced by a factor related to the chosen binning factor. For example, starting from the ROI position depicted in Figure 52, a vertical binning factor of 2 would reduce the frame height to 512 lines and image vertical start position to 11, as shown below:

$$Y_{resolution_{Bin}} = \frac{Y_{resolution_{NoBin}}}{VB}$$
(8.4)

$$ImageSizeY_{Bin} = \frac{ImageSizeY_{NoBin}}{VB} = 512$$
 (8.5)

$$ImageStartY_{Bin} = \frac{ImageStartY_{NoBin}}{VB} = 11$$
 (8.6)

Similarly, the *horizontal binning* mode combines the values of adjacent pixels on the same line (see Figure 8.4), and the horizontal lenght of the acquired image is then reduced by a factor related to the chosen binning factor. For example, starting from the same position, a horizontal binning factor of 2 would produce the following values:

$$X_{resolution_{Bin}} = \frac{X_{resolution_{NoBin}}}{HB}$$
(8.7)

$$ImageSizeX_{Bin} = \frac{ImageSizeX_{NoBin}}{HB} = 768$$
 (8.8)

$$ImageStartX_{Bin} = \frac{ImageStartX_{NoBin}}{VB} = 8$$
 (8.9)

All values will be truncated to the nearest lower integer.

The *combined binning* mode enables both binning modes (see Figure 8.5) and generates an image whose resolution is reduced in both dimensions.

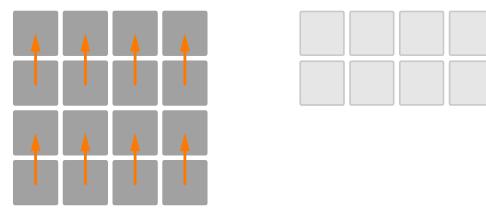


Figure 8.3: Monochrome vertical binning

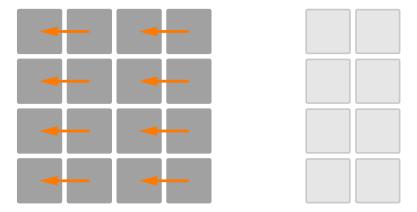


Figure 8.4: Monochrome horizontal binning

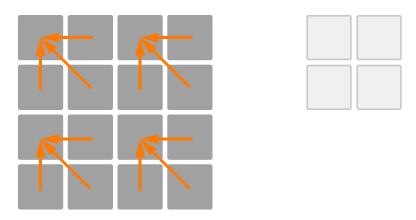


Figure 8.5: Monochrome combined binning

Binning is also available in color cameras: pixel values for identical colors are vertically and/or horizontally summed.

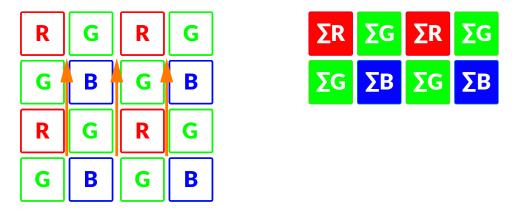


Figure 8.6: Color vertical binning

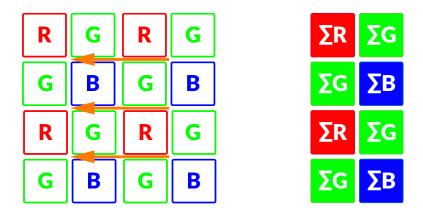


Figure 8.7: Color horizontal binning

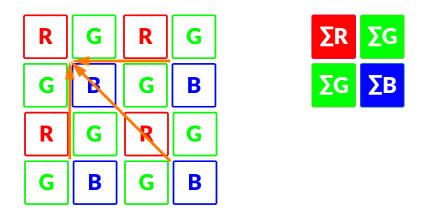


Figure 8.8: Color combined binning

8. Capturing images

Example Code 8.3 | Set combined binning mode

```
if (device.BinningAvailable && device.BinningModeAvailable)
    if (device.GetAvailableBinningModes().Contains(BinningMode.Sum))
    {
        // Set sum-type binning.
        device.BinningMode = BinningMode.Sum;
        // Get an array of available horizontal binning values.
        byte[] horizontalBinnings = device.GetAvailableHorizontalBinnings();
        // Check whether 2x horizontal binning value exists in the array or not.
        if (Array.IndexOf(horizontalBinnings, 2) != -1)
            device.HorizontalBinning = 2;
        // Get an array of available vertical binning values.
        byte[] verticalBinnings = device.GetAvailableVerticalBinnings();
        // Check whether 2x vertical binning value exists in the array or not.
        if (Array.IndexOf(verticalBinnings, 2) != -1)
            device.VerticalBinning = 2;
   }
}
```

Example Code 8.4 | Disable binning mode

```
if (device.BinningAvailable)
{
    device.HorizontalBinning = 1;
    device.VerticalBinning = 1;
}
```

Note

When enabling horizontal binning, ImageStartX and ImageSizeX values will be reduced by the corresponding binning factor. *Vertical binning* mode affects ImageSizeY and UnitImageSizeY as well.

8.4 PIXEL FORMAT

The *pixel format* parameter controls the format used for sending image pixels to the PC. The available formats depend on the camera model and the selected video mode:

When MONO8 is selected, the camera sends the 8 most significant bits of the image pixel luminance (Y) to the PC.

When MONO16 is selected, the camera sends all 16 bits of the image pixel luminance (Y), sampled using the resolution selected by the ADC resolution control and aligned to the most significant bit; pixel data are represented in *little endian*.

Pixel Format	CELERA Color model	CELERA Monochrome model	Video Mode	Bytes per pixel
MONO8	N.A.	\checkmark	0	1
MONO16	✓	✓	0	2
YUV422	✓	N.A.	0	2
RGB24	✓	N.A.	0	3
RAW8	N.A.	\checkmark	1	1
RAW16	✓	\checkmark	1	2

Table 8.1: Available pixel formats

Color cameras feature also YUV422 and RGB24 formats, providing color images; when one of these formats is selected, the camera performs an internal processing called *demosaicing*, reconstructing the actual color of each pixel sampled according to the Bayer filter (see Figure 3.2). The RGB24 format uses 3 bytes (24 bits) per pixel; it may therefore represent 16.7 million colors. When the YUV422 format is selected, after demosaicing the camera re-encodes the internal RGB representation: for each pair of pixels, the camera sends 2 bytes for luminance (one per pixel) and 2 bytes for chrominance, common to both pixels. It thus implements a simple 3:2 compression, still providing excellent image quality.

The RAW8 and RAW16 formats allow receiving raw data from the sensor, bypassing the processing chain; their representation is the same as MONO8 and MONO16 formats.

Note

When using RAW formats from color CELERA cameras, please consider that the camera output will be a bayer filtered image.

Example Code 8.5 | Set pixel format to RGB24

device.ColorCoding = ColorCoding.RGB24;

Warning

Pixel format can be set only when camera is not acquiring.

Note

Changing pixel format involves automatic recomputing of the packet size boundaries (see Section 8.6.4).

8.5 ADC RESOLUTION

All CMOS camera sensors incorporate an on-chip ADC to digitize the pixel values. Each sensor family features different ADC technology and their resolution may differ.

The ADC resolution influences the conversion speed, i.e. the time it takes for the ADC to convert is proportional to the selected ADC resolution and affects the maximum frame rate. The ADC resolution may hence be reduced to speed up image acquisition. Please refer to the detailed specification tables (Section 2.1.1).

When the maximum allowed *ADC resolution* is selected, CELERA internal processing chain uses the whole pixel dynamics as supplied by the ADC through all the processing chain. The pixel value is truncated (e.g. in 8-bit color codings) as needed just before sending the image data to the PC. This grants that the highest pixel data accuracy is achieved. On the other hand, reducing the *ADC resolution* uses a lower number of bits to represent pixel values so that higher frame rates can be achived on the cost of conversion accuracy. You can then find the best trade-off between frame rate and *ADC resolution* that meets the requirements of your application.

Note

For cameras featuring AMS CMV sensors, the sensor's analog gain is slightly dependent on the selected *ADC resolution*; the same *Gain* value may therefore generate slightly different gain levels when operating at different *ADC resolution*. You should set the operating *ADC resolution* before choosing the *Gain* level required by the application.

Example Code 8.6 | Set ADCResolution property to 10 bits

device.ADCResolution = 10;

Warning

ADC resolution can be set only when camera is not acquiring.

Note

Changing ADC resolution involves automatic recomputing of the packet size boundaries (see Section 8.6.4).

8.6 FRAME RATE AND BANDWIDTH

Acquired frames are sent to the host computer through the USB 3.2 Gen 1x1 connection. Thanks to these channels it's possible to take advantage of a total bandwidth of about $5\,\mathrm{Gbit/s}$ for each channel. However not all the theoretical bandwidth is really available for USB data transmission. CELERA user can choose between the USB standard isochronous channel, taking advantage of a reliable bandwidth of up to $3.2\,\mathrm{Gbit/s}$ (for each channel), or the bulk channel, more reliable on USB controllers that are integrated on PC motherboards.

8.6.1 Reserving bandwidth for isochronous channel

As shown in Section 2.5, the USB standard isochronous channel is based on a time interval of $125\,\mu s$, i.e. each second is divided into 8000 parts (or micro-frames). The bandwidth available for a device is defined by calculating the amount of KiB that the device can transmit during each micro-frame. The isochronous channel bandwidth cannot be reserved in any quantity: data transmission is made of 1024 Bytes-long packets. Each device can transmit a burst made from 1 to 16 packets, and up to 3 bursts in a micro-frame.

The configuration indicating the number of packets and bursts that can be sent in a micro-frame is called alternate settings (or simply alternate). Each device provides a series of alternates, each one defining a bandwidth to be reserved on the isochronous channel. Selecting one of these alternates means reserving its bandwidth for the current device. The selection of an alternate is automatically performed by API, based on current camera bandwidth requirements.

Note

Not all USB host controllers can handle the total available bandwidth: for more information about the recommended hardware configuration supporting the maximum CELERA cameras throughput, refer to Section 2.5.

8.6.2 Bandwidth limits for isochronous endpoint

User can limit the maximum bandwidth reserved to the camera through the SetBandwidthLimits method. This allows connecting multiple cameras on the same host without experiencing bandwidth sharing conflicts. It can also be used to limit camera performance when connected to a poor USB 3.2 Gen 1x1 host controller, as mentioned in Section 5.1.2.

In addition, CELERA cameras have the ability to handle different limits for either the two USB 3.2 Gen 1x1. connections; CELERA will correctly handle the resulting bandwidth based on the chosen values.

Example Code 8.7 | Sets a bandwidth limits of 32 KiB per microframe for each channel on CELERA

device.SetBandwidthLimits(new uint[] {32, 32});

USB Packet size	Burst size	Number of bursts	Bytes per micro-frame	Bandwidth
1 KiB	× 3	× 1	3 KiB	24 000 KiB/s
1 KiB	× 6	× 1	6 KiB	$48000\mathrm{KiB/s}$
1 KiB	× 8	× 1	8 KiB	$64000\mathrm{KiB/s}$
1 KiB	× 10	× 1	10 KiB	$80000\mathrm{KiB/s}$
1 KiB	× 11	× 1	11 KiB	$88000\mathrm{KiB/s}$
1 KiB	× 12	× 1	12 KiB	96 000 KiB/s
1 KiB	× 13	× 1	13 KiB	$104000\mathrm{KiB/s}$
1 KiB	× 14	× 1	14 KiB	$112000\mathrm{KiB/s}$
1 KiB	× 15	× 1	15 KiB	$120000\mathrm{KiB/s}$
1 KiB	×8	× 2	16 KiB	$128000\mathrm{KiB/s}$
1 KiB	× 9	× 2	18 KiB	$144000\mathrm{KiB/s}$
1 KiB	× 10	× 2	20 KiB	$160000\mathrm{KiB/s}$
1 KiB	× 11	× 2	22 KiB	$176000\mathrm{KiB/s}$
1 KiB	× 12	× 2	24 KiB	$192000\mathrm{KiB/s}$
1 KiB	× 14	× 2	28 KiB	224000KiB/s
1 KiB	× 16	× 2	32 KiB	$256000\mathrm{KiB/s}$
1 KiB	× 12	×3	36 KiB	$288000\mathrm{KiB/s}$
1 KiB	× 13	×3	39 KiB	$312000\mathrm{KiB/s}$
1 KiB	× 14	×3	42 KiB	$336000\mathrm{KiB/s}$
1 KiB	× 15	×3	45 KiB	360000KiB/s
1 KiB	× 16	× 3	48 KiB	384000KiB/s

Table 8.2: Available isochronous alternate settings

Example Code 8.8 | Sets a bandwidth limits of 32 KiB per microframe on CELERA One

device.SetBandwidthLimits(new uint[] {32});

Note

When calling the SetBandwidthLimits method, a valid alt-interface bandwidth -expressed as bytes per micro-frame- must be selected. To get a list of all available bandwidth-limit values the GetAllowedBandwidthLimits method can be invoked.

8.6.3 Bandwidth limit for bulk endpoint

In bulk endpoint mode the burst size is fixed at x16, resulting in a 16 KiB of data per bulk request. The bandwidth limit control can be seen as the average data transferred every $125\,\mu s$ but has no effect on the burst size itself.

8.6.4 Packet size for isochronous endpoint

The packet size parameter controls the maximum amount of data the device can send during a micro-frame. Not all values are permitted: the boundaries for the allowed *packet size* are adjusted by the camera according to the operating conditions; they depend on several parameters (*ROI*, *Analog to Digital Converter (ADC) resolution*, *pixel format*, etc.) influencing both acquisition speed and size of data to be sent. Refer to Section 8.6.4.1 for more details about how the required bandwidth can be estimated.

Note

When the camera automatically recalculates the *packet size* range, it also sets the *packet size* to the current maximum allowable value.

Note

The maximum allowed value for the *packet size* is the optimum value, beyond which there is no frame rate increase. Setting a *packet size* larger than Max–PacketSize generates an exception.

Note

The amount of bandwidth available on each interface can be restricted by the SetBandwidthLimits method, refer to Section 8.6.2.

Before starting live image acquisition, based on the current bandwidth limits and current packet size, API selects the lowest available alt-interface providing the required bandwidth.

Note

Selecting a bandwidth limit stricter than the minimum required bandwidth makes acquisition start impossible. An exception is thrown to signal this error condition.

The following code sets the PacketSize to 8192 B per micro-frame (8 KiB per micro-frame), after checking it does not exceed the maximum allowed packet size.

Example Code 8.9 | Set PacketSize property

device.PacketSize = Math.Min(device.MaxPacketSize, 8);

Warning

PacketSize property can be set only when camera is not acquiring.

Note

PacketSize property has unit as specified in PacketSizeUnitInfo unit info

8.6.4.1 Calculating the required bandwidth

Whenever an operating parameter of the camera is set, CELERA automatically calculates the upper and lower (optimum) PacketSize limits, optimizing camera performance. Nevertheless, it is useful to be aware of parameters affecting the acquisition speed and, consequently, determining bandwidth requirements (and vice versa).

The video stream bandwidth is influenced by video mode, ROI size, binning value, pixel format, ADC resolution, shutter floor, and chunk data. Refer to the relevant sections for information about these controls.

The following explanation is simplified for better understanding: the actual calculations made by CEL-ERA to determine the required bandwidth and maximum frame rate are slightly more complex and take into account some additional details that have been left out here for the sake of simplicity.

In general, the required bandwidth is calculated based on the number of bytes per micro-frame μ_B generated by the sensor:

$$\mu_B = (I_B + CD_B) \cdot R \cdot \frac{125\mu s}{1s}$$
 (8.10)

The quantity between round brackets is the total size in bytes of the frame and is the sum of two components:

- I_B is the image size in bytes and is the product of image width ROI_W , image height ROI_H and number of bytes per pixel P_B ($I_B = ROI_W \cdot ROI_H \cdot P_B$).
- CD_B depends on the number of enabled chunk data fields, i.e. the size (in bytes) of ancillary information related to each of the lines and the frame (see Section 7.3). CD_B can be calculated as $ROI_H \cdot CD_B^{line} + CD_B^{frame}$.

R is the image rate and is calculated as follows:

$$R = \frac{f_{SENSOR}}{W \cdot ROI_H} \tag{8.11}$$

where W is the overall size of the sensor (number of pixels in a row) and f_{SENSOR} is 100 MHz.

In other words, the above formula states that the number of bytes sent per micro-frame is the size in bytes of each frame multiplied by the image rate and divided by 8000 (number of micro-frames per second).

The value of $I_B + CD_B$ should be increased by 0.4% due to communication packet headers overhead.

8.6.5 Packet size for bulk endpoint

Similarly to the bandwidth limit (Section 8.6.3), the packet size represents the average data produced by the camera every $125 \, \mu s$. The calculation is performed in the same manner as the isochronous endpoint, but it is not possible to reserve such bandwidth due to the bulk transfer very nature.

8.6.6 Connecting multiple devices to the same host

When multiple devices are connected to the same host controller, the sum of the bandwidth used by all the devices must not exceed the total bandwidth available on the host (48 KiB max per micro-frame). The bandwidth limit control is the right tool that can be used to define the bandwidth to be reserved to a single device.

Note

A small part of the USB 3.2 Gen 1x1 bus bandwidth is reserved for controlling the camera: depending on the USB 3.2 Gen 1x1 controller you are using, adding another CELERA camera to the same controller may generate a small overhead (3-6%) slightly reducing the total bandwidth available for image transfer.

Warning

When using bulk endpoint, keep in mind that the total bandwidth is shared by all the devices connected to the host. Bandwidth can not be reserved by a single device but you can limit it by reducing the packet size properly.

8.6.7 Frame rate

The frame rate parameter controls the acquisition period, i.e. the time between the acquisition of two consecutive images, and is expressed in frames per second (Hz).

The *frame rate* control has effects only when the *frame start trigger* is disabled. Otherwise, the time between two consecutive acquisitions is determined by the trigger frequency. CELERA provides two *read-only* variables reporting the allowed range (upper and lower limits) for the *frame rate*. The lower limit is constant (1 fps), the upper limit depends on the available bandwidth (see Section 8.6.4.1): any direct or indirect change of the *packet size* control involves recomputing the maximum frame rate.

Unlike other video mode parameters, frame rate can be modified also during frame acquisition.

Note

When changing one of the controls affecting bandwidth (see the complete list in Section 8.6.4.1), the upper *frame rate* limit is recomputed and the current *frame rate* may automatically be reset to the maximum allowed value. Please see Section 8.6.8 for further details.

Note

The actual *frame rate* can be lower than the requested one when the current shutter time exceeds the acquisition period .

In general, the maximum value for the *frame rate* control is determined by three factors:

- 1. time required for converting and transferring the image from the sensor to the camera;
- 2. bandwidth available on the USB 3.2 Gen 1x1 bus;
- 3. size of the selected ROI.

To achieve the largest frame rate allowed by the application (see also Section 8.6.9), please:

- 1. decrease the ADC resolution (decreasing the conversion time for each frame);
- 2. ensure that the *shutter* time is not such large as to affect (increase) the minimum acquisition period:
- 3. set the optimal packet size, i.e. the maximum allowed given current operating conditions;
- 4. use the lowest ROI size compatibile with the application.

Example Code 8.10 | Set FrameRate property

```
// Set 30 fps, without exceeding the maximum allowed value.
device.FrameRate = Math.Min(device.MaxFrameRate, 30);
```

8.6.8 Preserve rates

As mentioned before, CELERA updates the upper *frame rate* limit when the current *packet size* is modified. This happens either upon direct request (e.g. device.PacketSize = 32) or when changing parameters affecting *packet size* limits (see Section 8.6.4.1).

Whenever the upper frame rate limit is updated, CELERA can increase the current frame rate value to that value in order to guarantee the maximum available acquisition speed, or the current frame rate value can be preserved.

This behavior is controlled by the PreserveRates property. When true, CELERA keeps the previously frame rate unaffected, as long as the old value is still inside the range of the allowed rates. Otherwise, if the property is set to false, the *frame rate* will always be maximized.

Example Code 8.11 | Enable the PreserveRates functionality

device.PreserveRates = true;

Note

CELERA cameras PreserveRates feature is enabled by default; it can be disabled by setting it to false.

8.6.9 Maximizing frame rate

To achieve maximum performance, you must pay special attention to correctly define some fundamental operating parameters such as lighting, exposure time and pixel format.

First of all, it is advisable to plan the environment where the camera will be operating so that the field is being illuminated with enough light to ensure exposure time is as short as possible;

To maximize performance, you must select the pixel format (color coding) using the smallest representation among those suitable for the particular application; for example, if you need to capture monochrome images just to show them on a display, selecting the MONO8 pixel format is possibly enough, as the extra information content provided by the MONO16 format is generally not reproducible by conventional screens.

Finally, avoid using ROI larger than necessary: it would generate unnecessary traffic, increasing the allocated bandwidth on USB 3.2 Gen 1x1 bus and slowing down the PC processing. Planning a proper use of the USB 3.2 Gen 1x1 bus bandwidth (choosing appropriate combinations of packet size) allows operating multiple CELERA cameras at once on a single PC, achieving sufficient performances for most applications and minimizing the overall hardware cost.

8.7 CONTROLS

CELERA cameras feature several controls, affecting the operation of the sensor and acting on the video signal processing chain. The API provides software methods that allow your application to control the camera; for more information about the numerical representation of each parameter, their range of operation and access policy, please refer to MaestroUSB3 SDK manual and examples.

Note

Brightness, Contrast, Saturation, Hue, WhiteBalance, Gamma, DigitalGain, UserLut, controls have no effect when using a RAW color coding

8.7.1 Brightness

The Brightness control modifies the lightness of the acquired image.

Example Code 8.12 | Set the brightness level

device.Brightness = 64;

Note


Raising the exposure time has not the same effect as increasing the brightness: while the brightness equally affects each pixel, exposure has a strong bias on highlights, leaving shadows almost unaltered. To appreciate the difference, you can cover the lens to obtain a dark frame and move exposure and brightness sliders. While the frame remains black when exposure is changed, the color turns gray if the brightness is increased. We suggest to adjust Gain and Shutter values instead of using Brightness control.

(a) Brightness 64

(b) Brightness 128 (neutral)

(c) Brightness 192

Figure 8.9: Example of Brightness control effect.

8.7.2 Contrast

The Contrast control modifies the ratio between the darkest and the lightest spot in the image.

8. Capturing images 107 _____

Example Code 8.13 | Set the contrast level

device.Contrast = 144;

(a) Contrast 64

(b) Contrast 128 (neutral)

(c) Contrast 192

Figure 8.10: Example of Contrast control effect.

8.7.3 Color correction matrix (color models only)

Each RGB pixel can be modified using the Color Correction Matrix.

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = CCM \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix} + CCO$$
(8.12)

$$CCM = \begin{bmatrix} k_{RR} & k_{GR} & k_{BR} \\ k_{RG} & k_{GG} & k_{BG} \\ k_{RB} & k_{GB} & k_{BB} \end{bmatrix}$$
(8.13)

$$CCO = \begin{bmatrix} O_R \\ O_G \\ O_B \end{bmatrix}$$
 (8.14)

Default values for CCM and CCO correspond to the neutral correction:

$$CCM_{Default} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (8.15)

$$CCO_{Default} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (8.16)

8. Capturing images

Note

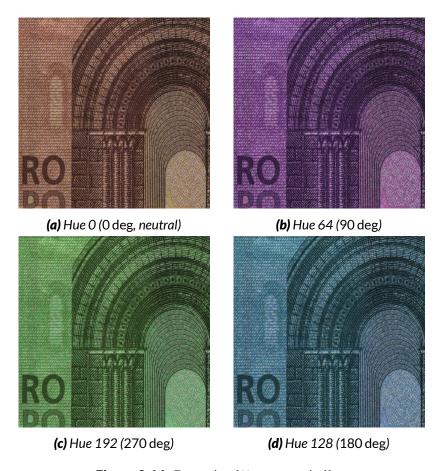
When color correction matrix is enabled, Brightness, Contrast, Saturation and Hue controls become disabled. There is no interaction between matrix coefficients and the actual values of the controls above: changing one of CCM or CCO coefficients does not change any control value and viceversa.

108 _

Example Code 8.14 | Set the color correction matrix coefficients

```
if (device.ColorCorrectionMatrixAvailable)
{
    float[,] matrix = new float[3, 3];
    // Populate coefficient matrix
    matrix[0, 0] = (float)kRR;
   matrix[0, 1] = (float)kGR;
   matrix[0, 2] = (float)kBR;
   matrix[1, 0] = (float)kRG;
    matrix[1, 1] = (float)kGG;
   matrix[1, 2] = (float)kBG;
   matrix[2, 0] = (float)kRB;
   matrix[2, 1] = (float)kGB;
   matrix[2, 2] = (float)kBB;
    // Write coefficients on camera
   device.SetColorCorrectionMatrix(matrix);
    float[] offset = new float[3];
    // Populate offset array
    offset[0] = (float)oR;
    offset[1] = (float)oG;
    offset[2] = (float)oB;
    // Write offsets on camera
   device.SetColorCorrectionOffset(matrix);
    // Enable color correction matrix
    device.ColorCorrectionMatrixEnabled = true;
}
```

8.7.4 Hue (color models only)


The Hue control modifies the dominant color of the acquired image to provide color enhancement.

```
Example Code 8.15 | Set the hue level
```

```
device.Hue = 140; // 0 corresponds to 0°, 255 corresponds to 360°
```


8. Capturing images 109 —

Figure 8.11: Example of Hue control effect.

8.7.5 Saturation (color models only)

The Saturation control modifies the color saturation of the acquired image.

Example Code 8.16 | Set the saturation level

device.Saturation = 140;

(a) Saturation 64

(b) Saturation 128 (neutral)

(c) Saturation 192

Figure 8.12: Example of Saturation control effect.

8.7.6 White Balance (color models only)

The WhiteBalance controls the relative mixture of primary colors (R, G and B); they allow to separately change the relationship between the Red/Green and Blue/Green image components to correct the colors resulting from the illuminating light and reset the actual white color to a neutral white.

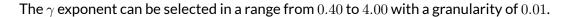
The camera also provides an automatic mode called one-push, that acquires a frame and uses it as a reference for calculating an automatic white compensation. When using automatic compensation, the reference white surface must be acquired with uniform illumination, using the average light level required by the application. Note that the area of the frame where the camera takes the information for the automatic calculation may be changed setting the LMR (see Section 7.1).

```
Example Code 8.17 | Set white balance automatically
```

```
device.WhiteBalance();
```

Example Code 8.18 | Set white balance manually

```
device.WhiteBalanceUB = 1400;
device.WhiteBalanceVR = 800;
```


8.7.7 Gamma

The Gamma control (gamma correction) allows compensating the sampled image to match the response of some displays and to boost low light details. Calculation performed by the camera is:

$$P' = C_{Max} \cdot \left(\frac{P}{O_{Max}}\right)^{\gamma} \tag{8.17}$$

where P is the input pixel, P' the compensated pixel value, C_{Max} the maximum achievable value of output pixel (e.g. 255 for graph in Figure 8.13) and $O_{Max} = 2^{ADC_resolution-1}$ is the maximum achievable value of original pixel (e.g. 2047 for curves in Figure 8.13).

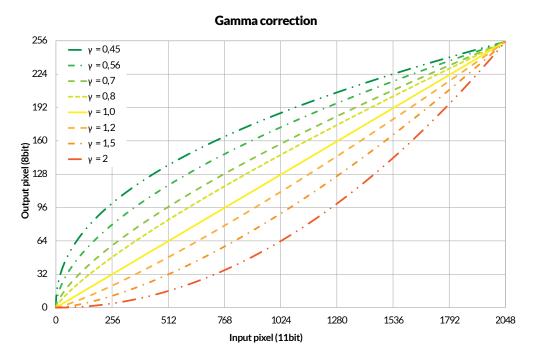


Figure 8.13: Gamma correction representations

Note

 $\gamma=1$ corresponds to the neutral correction (i.e. no correction applied).

Example Code 8.19 | Set gamma

```
UnitInfo unit = device.GetFeatureUnitInfo(Feature.Gamma);
double gamma = 1.23;
device.Gamma = (uint)(gamma / unit.Factor);  // Convert to Gamma units
device.GammaEnabled = true;  // Enable Gamma Correction
```

Warning

User LUT and gamma correction share the same processing chain resources and cannot be used simultaneously. At power-on, CELERA uses $\gamma=1.00$ (neutral correction); disabling gamma correction will automatically enable user LUT.

Note

In user application a good approach is setting Gamma value when the camera is not acquiring, since during the Gamma loading operation CELERA could ignore external triggers and/or lose frames.

(a) Gamma 0.7

(b) Gamma 1 (neutral)

(c) Gamma 1.3

Figure 8.14: Example of Gamma control effect.

8.7.8 Shutter

The Shutter control adjusts the exposure time of the frames acquired by the camera. The following example sets the duration of the exposure time to $100 \, \mu s$:

Example Code 8.20 | Set Exposure time with unit factor

```
// Retrieve ShutterUnit
UnitInfo unit = device.GetFeatureUnitInfo(Feature.Shutter);
// Convert exposure time in shutter units
uint reqShutter = (uint)(100e-6 / unit.Factor);
// Request minimum achievable exposure time in shutter units
uint minShutter = device.GetFeatureMin(Feature.Shutter);
// Set the greatest between requested exposure time and minimum shutter
device.Shutter = Math.Max(minShutter, reqShutter);
```

Note

Setting an exposure time longer than the current frame period decreases the actual frame rate. Consequently, current frame period becomes slightly larger^a than the currently selected exposure time.

MaestroUSB3 viewer and application examples show in detail how to use the Shutter control and allow

^adue to analog-to-digital conversion time

to experience the interactions with frame rate.

8.7.8.1 High resolution shutter

Due to the sensor architecture, the shutter time is set with limited precision and it is rounded to meet the time constraint of the sensor in use. The camera has a read-only property returning the actual duration of the resulting exposure.

Example Code 8.21 | Get the exposure length, expressed in seconds

```
float shutter = device.HighResShutter; // Read the actual exposure in seconds
```

8.7.8.2 Shutter resolution

As stated in Section 8.7.8.1, actual exposure time may be slightly different from the value requested by your application.

The camera is able to change the shutter time in steps whose duration depends on several parameters (PacketSize, ShutterFloor, DisableOverlap). The shutter resolution is a read-only control that lets you know the actual duration of these steps. A smaller value means you can approximate the desired shutter time with greater precision.

8.7.8.3 Shutter floor

As with all other controls, there is a maximum and minimum value for the shutter control. Its minimum value depends on several factors, including *ADC resolution* and available bandwidth (*packet size*). It happens as meeting the user-selected *packet size* may require slowing down the sensor data transmission rate at which it transmits data; due to sensor's internal time constraint, slowing data transfer may affect the minimum allowed shutter time.

In some applications, you may need smaller shutter times. This control can be used to set the sensor so that these shutter times can be reached.

Please note that after reducing the minimum shutter time, the sensor's ability to adapt its data rate to the selected transmission bandwidth (*packet size*) is limited: as a side effect of this setting, in some configurations the maximum reached *frame rate* may be reduced.

8.7.8.4 Disable overlap

8.7.8.5 Automatic exposure

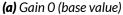
CELERA automatic exposure control allows automatically setting the shutter to achieve a specific average image intensity (*luma*). In order to use this feature, you must specify a *setpoint* (the target *luma*) and enable automatic exposure. The camera will calculate the appropriate *shutter*, frame by frame, to keep the *luma* at the required *setpoint*.

You can also limit the maximum shutter value set by the routine to avoid excessive frame rate slowdown.

Example Code 8.22 | Set up automatic exposure

```
// Check if automatic exposure is available
if (device.GetFeatureAutoCapability(Feature.Shutter))
{
    device.AutoExposureRef = 128; // Set the desired luma target
    device.AutoExposureLimit = 3333; // Limit the maximum shutter to 33.33ms (30fps)
    device.AutoExposure = true; // Enable auto exposure feature
}
```

A typical automatic exposure setup procedure includes the following steps: issue an initial manual camera setup (shutter, gain, etc.) first, so that the resulting image has the desired brightness level; invoke Auto-ExposureRefSetPoint, updating the AutoExposureRef property with the current luma value. The following code explain how to take advantage of this method:


Example Code 8.23 | Set up automatic exposure

```
// After reaching the desired image brightness you can invoke the following commands:
device.AutoExposureRefSetPoint();
device.AutoExposure = true;
```

8.7.9 Analog Gain

The Gain control adjusts the gain of the analog section of the sensor; it allows to adjust the analog sensitivity to compensate for insufficient lighting.

(b) Gain

Figure 8.15: Example of Gain control effect.

Warning

To maximize the signal-to-noise ratio (SNR) of the acquisition, it is recommended to choose a lighting system that allows using the lowest possible Gain values.

Note

The sensor's analog gain is slightly dependent on the selected ADC resolution; the same Gain value may therefore generate slightly different gain levels when operating at different ADC resolution. You should set the operating ADC resolution <u>before</u> choosing the Gain level required by the application.

8.7.10 Digital Gain

When, despite using the sensor analog amplifiers (Gain control), the resulting images cannot achieve the desired brightness level, you can enable a digital amplifier module scaling the acquired signal up.

Note

The unity gain value is 1024, therefore the digital amplifier module can also be used as an attenuator choosing values below 1024.

Example Code 8.24 | Set digital gain level

// Set digital gain to 1536/1024 (gain step = 1/1024)
uint maxDigitalGain = device.GetFeatureMax(Feature.DigitalGain);
device.DigitalGain = Math.Min(1536, maxDigitalGain);

(a) Digital Gain 700

(b) Digital Gain 1024 (neutral)

(c) Digital Gain 1300

Figure 8.16: Example of Digital Gain control effect.

Warning

By its very nature, the digital amplification may generate missing codes; it may happen that the combination of the ADC resolution and the Digital gain make some brightness values less frequent (or even suppress them). If these artefacts adversely affect the acquisition, they can be reduced by selecting the maximum ADC resolution compatible with the speed requirements of the application.

8.7.11 User LUTs

CELERA can apply a conversion table (look-up table, or LUT) to the incoming image data to change color/brightness distribution. The API functions allow to store up to four LUTs into the camera non-volatile memory; viewer and application examples show in detail how to use User LUTs and experience the advantages.

Warning

User LUT and gamma correction share the same processing chain resources and cannot be used simultaneously. At power-on, CELERA uses Gamma=1.00 (neutral correction); disabling gamma correction will automatically enable user LUT.

To apply a user LUT, you must save it first into the camera; the following example stores a LUT into the camera and selects it:

Example Code 8.25 | Store lut into the camera

```
float[] lut = new float[device.UserLut.LutLenght]; // Create a linear sample LUT
for (int i = 0; i < device.UserLut.LutLenght; i++)
    lut[i] = (float)i / ((float)device.UserLut.LutLenght - 1);

if (device.UserLut.LutWritable(1)) // If LUT 1 is writable
    device.UserLut.Write(1, lut); // Write LUT 1 to camera memory

device.LutIndex = 1; // Select LUT 1
device.GammaEnabled = false; // Disable gamma to enable LUTs</pre>
```


Note

In user application a good approach is setting LUT index when the camera is not acquiring, since during the LUT loading operation CELERA could ignore external triggers and/or lose frames.

8.7.12 Luma

Luma is a read-only control that returns the average image luminance; Luma is evaluated within the currently selected LMR (see Section 7.1). The returned value is related to the last acquired image when the request was received by the camera.

Example Code 8.26 | Read the Luma value of the last image

uint currentLuma = device.Luma;

Note

Color cameras evaluate Luma using conversion factors R=0.299, G=0.587, B=0.114.

8.7.13 Time Stamp

TimeStamp is a read-only control that returns the status at runtime of timeStamp counter. TimeStamp is a 16-bit unsigned integer generated from a 1 ms timer and cleared when acquisition is started.

Example Code 8.27 | Read the TimeStamp value

```
ushort currentTime = device.TimeStamp;
```

8.7.14 Flip and Rotate

The Flip control allows flipping the image horizontally, vertically and diagonally.

Example Code 8.28 | Flip the image diagonally

```
device.Flip = FlipMode.Diagonal;
```

The Rotate control rotates the image counterclockwise along the orthogonal axis across its center; the granularity of the rotation is 90 deg.

Example Code 8.29 | Rotate the image of 270 deg

```
device.Rotate = RotateMode.R270;
```

8.8 SAVING DEVICE CONFIGURATION

You can save the status of CELERA camera controls and calibration and reload it on demand: camera setup is saved into the internal flash memory and can then be reloaded even after powering off and on the device.

CELERA cameras can store multiple user configuration, allowing user to preset various scenarios and recall them whenever needed. The maximum number of user configuration is camera-dependant;

Example Code 8.30 | Retreive the maximum number of user configurations

```
ushort cfgNum = device.MaxFlashIndex() + 1;  // Get max number of user configurations
```

Example Code 8.31 | Save and restore camera configuration and calibration

```
ushort cfgIndex = 1;
// Save control and calibration into camera memory
device.Save(cfgIndex);
// Load control and calibration from camera memory
device.Load(cfgIndex);
```

Example Code 8.32 | Erase configuration

```
// Erase control and calibration from camera memory
device.Erase(cfgIndex);
```

8.8.1 Export and import XML

CELERA cameras allow user to export and import camera configuration and calibration to an XML file. It can be useful to share camera status during remote assistance session or to configure multiple cameras with the same set of parameters.

Note

Calibration parameters are exported to XML if and only if a calibration process has been conducted or recalled from camera memory.

8. Capturing images 119 -

Example Code 8.33 | Export camera configuration and calibration previously saved on camera memory

```
ushort cfgIndex = 2;
// Load control and calibration from camera memory
device.Load(cfgIndex);
// Creating xml file name
string filename = "C:\Users\UserName\Desktop\"CamCfg + cfgIndex.ToString() + "."xml;
// Export xml file
device.SaveXml(filename);
```

Example Code 8.34 | Load from XML and save into camera memory

```
ushort cfgIndex = 1;
// Import camera configuration from xml file
device.LoadXml"(C:\Users\UserName\Desktop\CamCfg."xml);
// Save control and calibration into camera memory
device.Save(cfgIndex);
```

8.8.2 User configuration (deprecated)

User can save and load the status of CELERA camera controls through dedicated function.

Example Code 8.35 | Save and restore camera configuration from camera memory

Example Code 8.36 | Erase user configuration from camera memory

```
device.UserConfig.Erase(1);  // Erase control status from camera memory
```

8.9 CONFIGURATION EXAMPLE

Example Code 8.37 | Set camera's main parameters and enable live acquisition

8. Capturing images

8.10 PATTERN GENERATOR

CELERA cameras implement an internal fixed pattern generator, which provides synthetic images and allows you to check if the camera is correctly installed and working over the USB 3.2 Gen 1x1 connection. The pattern generator simulates the behavior of the camera implementing all the parameters controlling the acquisition, except for those strictly dependent on the sensor (e.g. analog gain, CDS gain, shutter, etc.).

While being related to the sensor, the ADC resolution has been emulated as well, as it has a large impact on camera performance: it allows to evaluate the camera performance under real operating conditions.

Example Code 8.38 | Enable pattern generator

device.PatternGen.Enabled = true;

Warning

Enabling or disabling the pattern generator during acquisition may lead to a frame loss.

9

Alkeria Advanced Sequencer

CELERA cameras are equipped with an *advanced sequencer* module able to modify some camera controls on the fly, according to an external or internal event. This module allows to setup different sets of video parameters that can be selected and quickly cycled during frame acquisition. Parameters are set instantaneously between the acquisition of two consecutive frames as soon as the trigger condition is detected. The *advanced sequencer* module allows, for example, changing the shutter time depending on an external selector signal or shifting the Region-Of-Interest (ROI) at each frame to track a moving target.

Note

The *advanced sequencer* properties and methods are only accessible when the camera is not acquiring.

9.1 SEQUENCER ENABLED CONTROLS

The advanced sequencer module can operate on all the camera controls listed below:

- shutter;
- frame rate;
- gain;
- digital gain;

- image start X;
- image start Y;
- white balance;
- brightness;

- contrast;
- saturation;
- sharpness;
- output port status.

CELERA camera can be configured in such a way that these values can be changed between frames or upon detection of specific events.

All the other controls, i.e. the ones not listed before, will not be modified during the advanced sequencer module operation.

9.2 PAGE CONCEPT

All the specified controls values listed above are grouped in a sequencer page. The advanced sequencer module can handle up to 64 pages, containing values to be applied before starting frame exposures. When camera is powered on, or when the Init method is invoked, all sequencer page values are initialized to their default values. When camera configuration is saved, all the sequencer sets of values are stored into the on-camera non-volatile memory and made available for subsequent reload.

9.3 PAGE SETUP

9.3.1 Writing Page Settings

Page settings can be written by selecting a sequencer page and setting the specified camera features, as when the sequencer is not in use. The advanced sequencer features also an all-pages write mode to speed-up the setup process: when the application uses a common set of values, the same for all pages, page number -1 may be indexed to write common values. Those values will be written in all pages at once. After writing common values, non-common parameters for specific pages can be still be written selecting the destination page.

Note

When the camera is acquiring and the *advanced sequencer* is enabled you cannot change the sequencer controls (i.e. only non-sequenced controls are accessible).

Example Code 9.1 | Sequencer setup example

```
device.Sequencer.Page = -1; // Select page -1
device.Shutter = 1000; // Write common values to all sequencer pages
device.Gain = 0;
device.ImageStartX = 100;
device.ImageStartY = 0;

// Setup 10 sequencer pages, changing image position and shutter:
for (int i = 0; i < 10; i++)
{
    device.Sequencer.Page = i; // Select i-th sequencer page
    device.ImageStartY = i * 100; // Shift ROI of 100 pixel at a time
    if (i % 2 == 1)
        device.Shutter = 500; // Write a different shutter only on odd pages
}</pre>
```

Note

When the camera is acquiring and the *advanced sequencer* is disabled you cannot directly change the active page; the only way to change the active page is enabling the *advanced sequencer* and using the software page increment source (refer to Section 9.4.3). This can be useful in debugging.

9.3.2 First and Last page

Before starting live, you can enable the *advanced sequencer* module. When the *advanced sequencer* is left disabled, the camera acquires images based on the settings of the currently selected page. When enabling the *advanced sequencer* module, you must choose the first and last page index first.

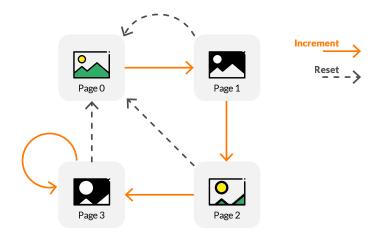
The advanced sequencer module starts from the first page of the selected interval and moves to the following pages until it reaches the page marked as last. For instance, if page 2 and 4 are selected as first and last page respectively, the advanced sequencer cycles from page 2 to 4. If the loop option is enabled (refer to Figure 9.2) and the last page is reached, further page increment events will make the advanced sequencer go back to the first page of the interval. Page increment events will be ignored otherwise.

Example Code 9.2 | sequencer loop from page 2 to 4

```
device.Sequencer.FirstPage = 2;
device.Sequencer.LastPage = 4;
device.Sequencer.Loop = true;
device.Sequencer.Enabled = true;
```


9.4 MOVING BETWEEN PAGES

9.4.1 Manual page selection


When the *advanced sequencer* is disabled, i.e. in normal camera operation, the active page set can be manually loaded before starting image acquisition as shown in the following example:

Example Code 9.3 | Manual sequencer page selection

```
device.Sequencer.Page = 2; // Select page 2
device.Acquire = true; // Start live
```

9.4.2 Increment and reset events

When the advanced sequencer module is enabled, it applies different page settings upon receiving page increment or page reset events. The camera starts acquiring images using the settings stored in the first page. Page increment events will make the sequencer move forward to the following pages until the last page is reached. A Page reset event will make the sequencer jump back to the first page of the selected interval.

Figure 9.1: Example of sequencer path with loop disabled

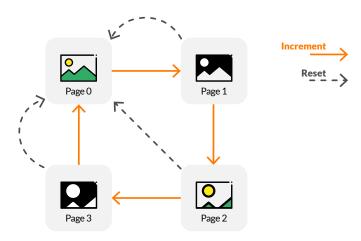


Figure 9.2: Example of sequencer path with loop enabled

9.4.3 Event Sources

Page increment event sources can be one of the following:

- External input: advanced sequencer page is changed according to an event on an input pin.
- Software: advanced sequencer page is changed at your explicit software request.
- Frame start: advanced sequencer page is changed at each frame-start trigger.

Code 9.4 shows how to configure *advanced sequencer* to increment the page number on falling edge of the signal at port 1. The page is then reset through Sequencer. SoftwareReset method.

Example Code 9.4 | Sequencer page increment on external input event

```
device.Sequencer.IncrementSource = SequencerSource.External; // Select increment source
device.Sequencer.IncrementExternalInput = 1; // Select input port 1
device.Sequencer.DetectIncrementExternalInputEdge = true; // Detect edge vs. level
device.Sequencer.InvertIncrementExternalInput = true; // Invert input
device.Sequencer.ResetSource = SequencerSource.Software; // Manual reset
```

Note

You cannot select FrameStart as a source for *reset event* as it would make the sequencer stuck on the first page

9.5 CONFLICTS AND TIMINGS

Page increment and page reset events are detected and accepted by the advanced sequencer, and executed as soon as possible, according to operating constraints: the current page cannot be changed during exposure time; any page increment or page reset request received during a frame acquisition is registered and served at the end of the current exposure.

9.6 EXAMPLES OF CONFIGURATION

9.6.1 Example 1: drive illuminators with CELERA camera

This example assumes that you have to command two different illuminators with two different I/O pins and a specific shutter time has to be used with each illuminator. A switch is connected to input pin 1 and whenever you press the switch, the camera will switch between illuminator 0 and 1.

Page	Shutter	PIO 3 port Source	PIO 4 port Source
0	100 µs	Exposure	Null Output (Logic 0)
1	800 µs	Null Output (Logic 0)	Exposure

Table 9.1: Example 1 sequencer settings

Example Code 9.5 | Configure sequencer to drive two different illuminators

```
device.Sequencer.FirstPage = 0;
device.Sequencer.LastPage = 1;
device.Sequencer.Loop = true;
device.Sequencer.Page = 0; // Select page 0
device.Shutter = 100; // Set 100 us shutter time
device.PIOPorts[3].Source = OutputSource.Exposure; // Send exposure signal on port 3
device.PIOPorts[4].Source = OutputSource.Manual; // Send a logic 0 on port 4
device.PIOPorts[4].Value = false;
device.Sequencer.Page = 0; // Select page 1
device.Shutter = 500; // Set 500 us shutter time
device.PIOPorts[3].Source = OutputSource.Manual; // Send a logic 0 on port 3
device.PIOPorts[3].Value = false;
device.PIOPorts[4].Source = OutputSource.Exposure; // Send exposure signal on port 4
// Select pin 1 as external page-increment input:
device.Sequencer.IncrementSource = SequencerSource.External;
device.Sequencer.IncrementExternalInput = 1;
device.Sequencer.DetectIncrementExternalInputEdge = true;
device.Sequencer.InvertIncrementExternalInput = true; // Detect falling edge
device.Sequencer.Enabled = true;
```

Please note that the input used to increment the sequencer page can also be used to trigger a frame. Therefore, if you want to trigger exactly one frame with each illuminator you can set port 1 as external Frame Start Trigger source, as shown in Code 9.6.

Example Code 9.6 | Configure port 1 as frame start trigger

```
// Select pin 1 as trigger source:
device.FrameStartTrigger.Source = TriggerSource.External;
device.FrameStartTrigger.ExternalInput = 1;
device.FrameStartTrigger.DetectExternalInputEdge = true;
device.FrameStartTrigger.InvertExternalInput = true; // Detect falling edge

device.FrameStartTrigger.Enabled = true; // Enable frame trigger (no free-run)
```


9.6.2 Example 2: split camera field

This example assumes that you want to split the camera field of view into two parts and acquire alternatively the top first 500 lines or the following 500 lines. The acquired image portion has to be selected based on the value of an external signal connected to port 1.

Page	Image start Y	
0	0	
1	500	

Table 9.2: Example 2 sequencer settings

To obtain the required behavior, the same pin can be used to reset the page index with a logic '0' and to increment the page, i.e. select the page 1, with a logic '1'. The page reset event has higher priority than the page increment event. Furthermore, the Loop property can be set to false so that, even if the page-increment event is detected multiple times, the page index will never go back to 0. Code 9.7 shows how to configure CELERA camera for this purpose.

Example Code 9.7 | Configure sequencer to split image field

```
device.Sequencer.FirstPage = 0;
device.Sequencer.LastPage = 1;
device.Sequencer.Loop = false;
device.Sequencer.ResetExternalInput = 1;
device.Sequencer.ResetSource = SequencerSource.External;
device.Sequencer.InvertResetExternalInput = true;
device.Sequencer.DetectResetExternalInputEdge = false;
device.Sequencer.IncrementExternalInput = 1;
device.Sequencer.IncrementSource = SequencerSource.External;
device.Sequencer.InvertIncrementExternalInput = false;
device.Sequencer.DetectIncrementExternalInputEdge = false;
device.ImageSizeY = 500;
device.Sequencer.Page = 0; // Set page 0
device.ImageStartY = 0;  // Set top ROW index for page 0
device.Sequencer.Page = 1; // Set page 1
device.ImageStartY = 500; // Set top ROW index for page 1
device.Sequencer.Enabled = true;
```


10 Alkeria player

MaestroUSB3 comes with a user-friendly software application, allowing to explore the main features of CELERA cameras and check the correct camera and software installation. Once installed MaestroUSB3 SDK, you can find the application at the following path:

Program Files\Alkeria\USB3\MaestroUSB3\Players

Alternatively, you can easily start the camera viewer by accessing the Windows Start button and look for *Alkeria player* from the MaestroUSB3 Program folder:

Start->All programs->Alkeria->USB3->MaestroUSB3.

Figure 10.1: Alkeria player main window

10.1 DEVICE CONNECTION AND INITIALIZATION

The top left toolbar is a drop-down menu letting you select a specific CELERA camera among the ones connected to the system. When no CELERA camera is connected, the drop-down menu and the toolbar are grayed out.

10.2 TOOLBAR BUTTONS

The top toolbar shows the controls listed in Table 10.1:

<i>"</i>	Init	Initialize the camera to default settings (camera power-up status).
•	Play	Start image playback.
	Stop	Stop image playback.
69	Settings	Open the settings panel.
	Save	Save the last acquired image as a Windows Bitmap.
	Save RAW	Save the last acquired image as a RAW binary file.
	Save Sequence	Open the Save Sequence panel.
4	Flip	Select horizontal and/or vertical flip.
	Rotate	Select image rotation mode (0°, 90°, 180°, 270°).
I	Set LMR	Specify the Light Meter ROI by drawing a rectangle on the image.
15 JH 16 M	Stretch	Enable image stretching.
Ø	Maintain Aspect Ratio	Maintain image width/height ratio during stretching operation.
	Zoom In	Increase the zoom level (and disable stretching).
Q	Zoom Out	Decrease the zoom level.
	Full Screen	Enter full-screen mode.
٩	Temperature Status Normal	Signals that the camera is working within the safe operation area.
<u> </u>	Temperature Status Warning	Signals that the current temperature is above 70 °C. Even if the camera is able to acquire images, working at this temperature is not recommended.
•	Temperature Status Fault	Signals that the current temperature is above 80 $^{\circ}$ C. The image acquisition is suspended. For more details on the temperature safety mechanism refer to Section 3.6.6.
	Display Frames	Open Display Frames panel.
*	LUT	Launch the Look-Up Table editor.

Table 10.1: Alkeria player buttons

10.3 SETTINGS PANEL

10.3.1 Advanced Sequencer Page

Camera settings are stored in pages, allowing you to set different operating configurations retrievable on-demand. The top scroll bar in the settings panel lets you select the current Sequencer page (please refer to chapter 7 to know more about the Sequencer feature). Selecting "-1" as a page number writes the same settings to all pages at once.

10.3.2 Features

The features tab, shown in Figure 10.2, allows adjusting all camera controls, such as:

- Shutter: defines the exposure time, i.e. the time span in which the sensor is exposed to light;
- Gamma: applies a non-linear transformation to the image, defined by the relationship $I_{out} = I_{in}^{\gamma}$, where I is the pixel luminosity;
- Gain: controls the analog gain on sensor's circuitry;
- Contrast: modulates the ratio between the darkest points on the image and the lightest ones;

Luma and Temperature features have a "Read" button on the right which updates the value from the camera. Gamma control can be turned on and off (LUT Index control will be activated when Gamma control is turned off).

Note

Shutter control has an "Auto" check-box, allowing you to enable auto-shutter feature.

10.3.3 Video Settings

The Video Settings tab (Figure 10.3) allows the selection of video mode, color coding and ADC resolution. Other relevant video settings parameters are:

- Region-Of-Interest (ROI): sets the size of the image (width and height), and the displacement from the upper-left corner of the original frame (left and top).
- Frame Combiner: allows to pack multiple frames into a single frame.
- Rates and Bandwidth: adjusts the acquisition speed;
- Pattern Generator: displays a fixed pattern instead of the acquired frame;
- Binning: sets the horizontal and/or vertical binning;

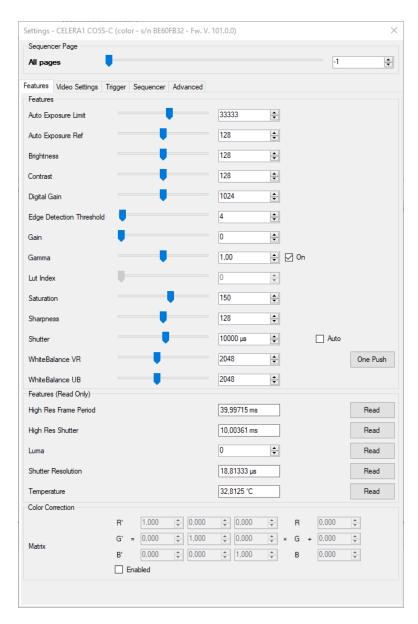


Figure 10.2: Features controller tab

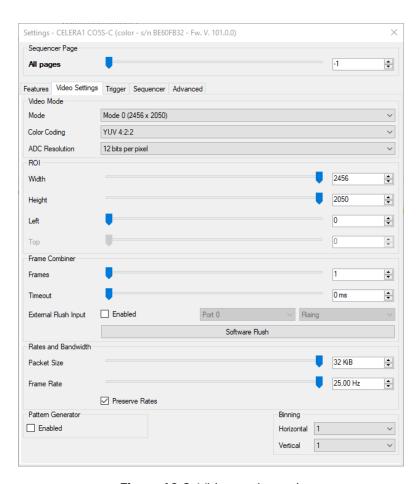
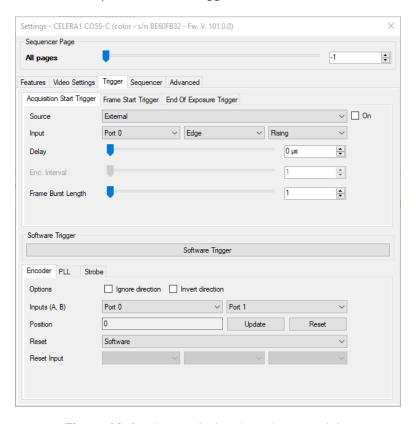


Figure 10.3: Video settings tab


10.3.4 Trigger

The Trigger panel (Figure 10.4) allows to setup the Trigger Manager module. Various events can be triggered, either via software or external sources (I/O):

- Acquisition start;
- Frame start;
- End of exposure.

Ticking the check-boxes on the right of the panel enables the related trigger modules. Drop-down lists can be used to select trigger source, delay and encoder step interval.

The bottom part of the panel contains other useful controls: Encoder (see Section 4.3.1) and PLL (Frequency Multiplier, see Section 4.3.2) setup. The Frame Burst bar controls how many frames are acquired during a frame burst when the Acquisition Start Trigger is enabled (see Section 6.1).

Figure 10.4: Trigger tab showing trigger modules

10.3.5 Alkeria Advanced Sequencer

The Sequencer panel (Figure 10.5) allows you to setup the Sequencer module (refer to Chapter 9)

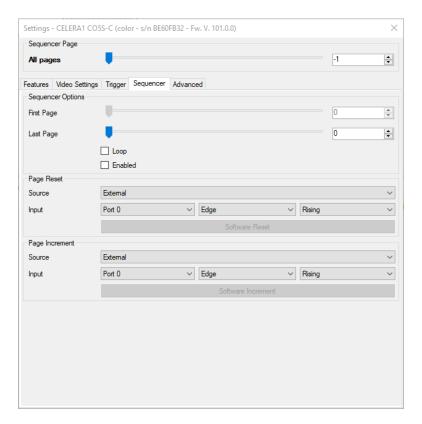


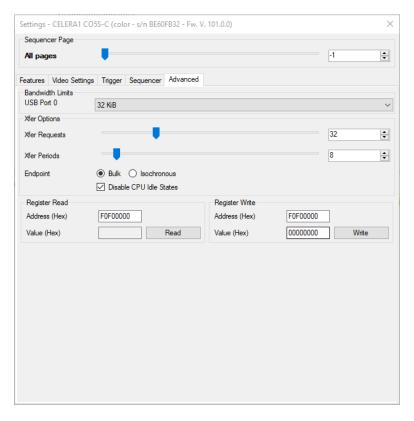
Figure 10.5: Alkeria Advanced Sequencer tab showing sequencer settings

10.3.6 Advanced features

The advanced feature tab (Figure 10.6) contains additional options to control the USB channel. Changing these values may prevent the camera from working correctly.

The Bandwidth Limit control allows you to increase the upper bandwidth limit used by USB 3.2 Gen 1x1 connection. The maximum value you can set is 48 KiB per micro-frame (see Section 8.6).

Note


Not all host controllers support the maximum theorical speed. For this reason the camera has a default startup limit of 32 KiB per micro-frame you can override according to your setup.

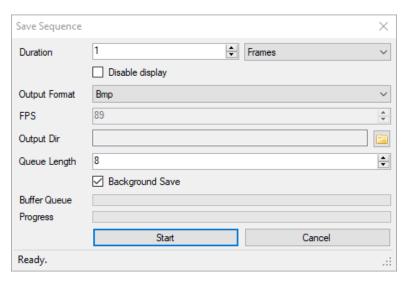
Note

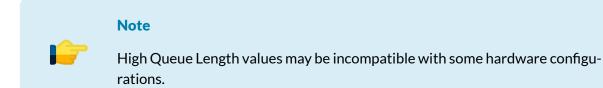
The checkbox *Use Bulk Endpoint* switches the USB interface between isochronous and bulk endpoint (see Section 2.5).

Figure 10.6: Advanced settings tab

10.4 SAVE SEQUENCE PANEL

The Save Sequence Panel allows to save on the hard drive a sequence of frames captured by the camera, with specific parameters (Figure 10.7).




Figure 10.7: Save Sequence panel

The *Duration* entry allows to specify the sequence length either in number of frames or in seconds. When the *Output Format* is a still image format, such as Bmp, every frame will be saved in a new file. If the output format is set to AVI, a single video file is produced. User may specify the video frame rate in the *FPS*

entry.

The Queue Length control determines the number of frames pre-allocated in RAM during capture. If the Background Save checkbox is unchecked, frames will be saved when the RAM queue is full. Otherwise, frames will be automatically saved on the hard drive.

10.5 DISPLAY FRAMES PANEL

When clicking on the "Display Frames" button on the Player toolbar, a panel will open. This panel allow the user to set the maximum frame-rate to be displayed on the screen. It's possible to disable rendering on main UI by un-checking the "Display" box. (Figure 10.8)

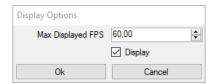


Figure 10.8: Display Frames panel

10.6 CAMERA MENU

On the rightmost part of the toolbar you can find the Camera menu (Figure 10.9) containing cameraspecific features.

10.6.1 Saving and Exporting Configuration

The Config menu allows to save and load camera configuration to and from the camera internal flash memory. Configuration can be exported and imported to and from xml files as well. See Section 8.8 for further information.

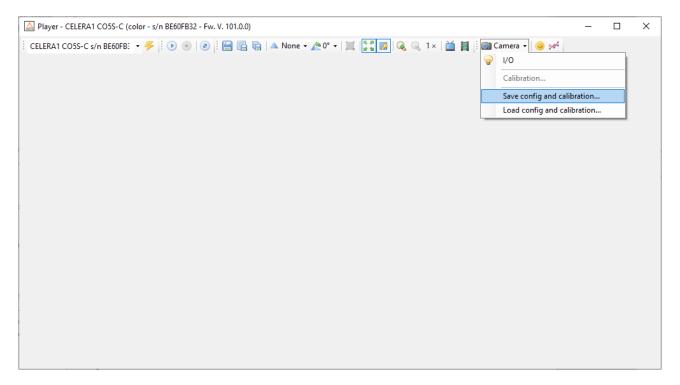


Figure 10.9: CELERA specific features menu

10.6.2 I/O panel

The I/O panel (Figure 10.10) allows to control the I/O ports (see Chapter 4 for details).

Direction for the bidirectional port (Port 0) can be chosen by using the radio button on the top of the panel (Input / Output). Input ports allow enabling input termination (see Section 4.2.1), reading input status through the "Update" button and selecting input debounce time. The "Output Source" drop-down list allows to select how to route internal logical signals to the output pins.

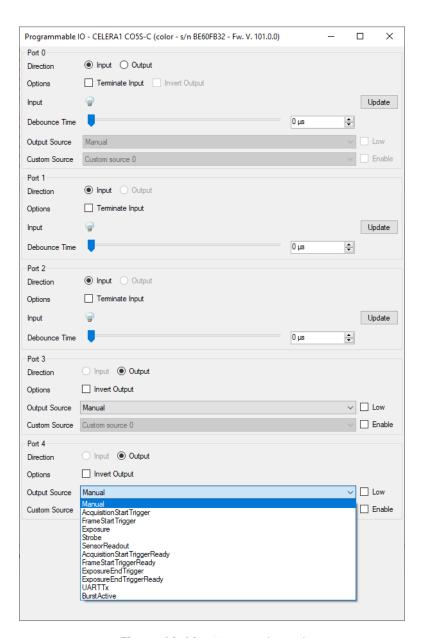


Figure 10.10: I/O control panel

10.6.3 Black Level Calibration (CMV models only)

Starting from the first CCDs, image sensors have a certain number of side columns shielded from incident light, in order to measure the electric analog offset due to thermal and parasitic effects and subtract it analogically or digitally from the acquired image. This reference level is called *Black Level* and represents the output of the camera in total darkness, with no compensations applied. The ideal ADC output characteristics should be a straight line resulting in a null output when no light incides into the pixel, and fullscale value (e.g. 255 in 8-bit modes) at saturation. Due to the Black Level offset, the actual pixel conversion may be affected by a small amount that can be compensated using the Black Level Offset control.

Setting the right black level plays a very important role in obtaining a high-quality image from the camera. When the black level is improperly set, the image has poor dynamic range or, in other words, it looks

flat. When the black level is set too low, darker portions of the image appear grey and no image detail appears "really black", as if they were "hidden behind a curtain". On the other side, when the black level is set too high, darker details collapse into black and disappear, while white details become grey. Figure 10.11 shows the effect of an improperly set black level.

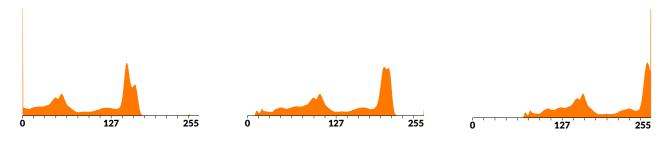


Figure 10.11: Black level calibration examples

The effect of a wrong black level can be seen on the images histogram too. When the black level is set too high, the image histogram appears compressed towards the right side (high lights), leaving the left side unpopulated. On the other side, setting black level too low causes the image histogram to translate leftwards, leaving the right side unpopulated. The histogram in the middle refers to an image whose black level is properly set. The histogram is well centered and all values from zero to saturation are represented.

Figure 10.12: Black level histograms examples

Since ideal camera output should be zero for all active pixels not exposed to light, some modern CMOS sensors feature some automatic compensation mechanism in order to adjust black level without your intervention. Some other sensors, like the CMV series from AMS, use an internal register to fine tune the black level. Since the optimum black level may be different from batch to batch, or even from sensor to sensor, CELERA cameras come already individually calibrated in order to have the best black level preset. Anyway, some small residue offet may arise when long exposures are needed or when the camera is operated at high temperature, so *Alkeria player* features a calibration form allowing manual and automatic black level calibration.

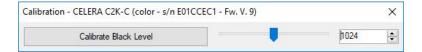


Figure 10.13: Black level panel

The calibration form features a manual control and an automatic calibration routine that finds a black level offset value that gives a maximum number of zero pixels not greater than 2% of image.

10.6.4 LUT Editor

A LUT is a function that you can apply to each frame color channel, digitally modifying the camera color response. This function is applied directly in hardware by the camera (see Section 8.7.11). This simple GUI allows you to edit and apply your custom LUT.

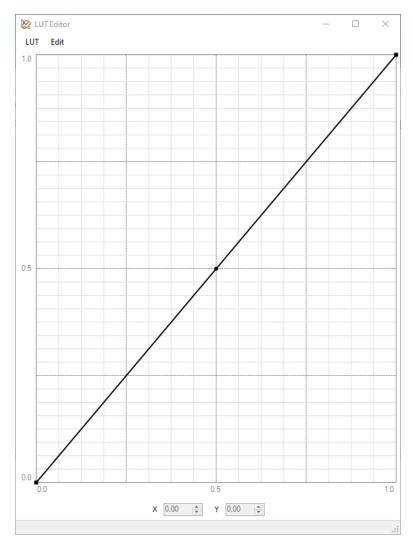


Figure 10.14: LUT editor GUI

11

Profilometer extension for laser triangulation

11.1 LASER TRIANGULATION

Laser triangulation is a non-contact distance measurement technique widely employed for surface inspection applications. A common setup involves a camera and a laser line, positioned as in Figure 11.1.

The laser line reflected by a target surface is captured by the camera. The first step for distance calculation is to precisely identify the reflected line position in the acquired frame. Resolution of the overall measure is highly dependent on the accuracy of this step.

The Profilometer extension for CELERA monochrome models enables on-camera acceleration of the line position detection algorithm. This approach offers two advantages:

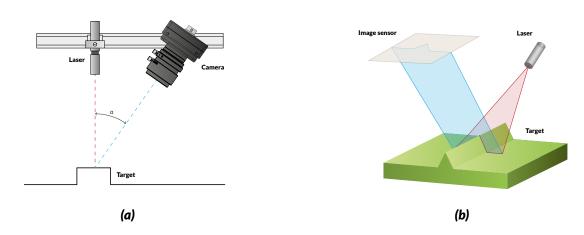
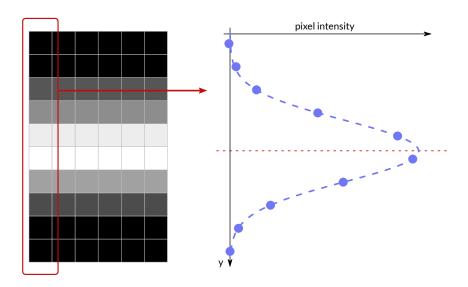



Figure 11.1: Typical laser triangulation setup.

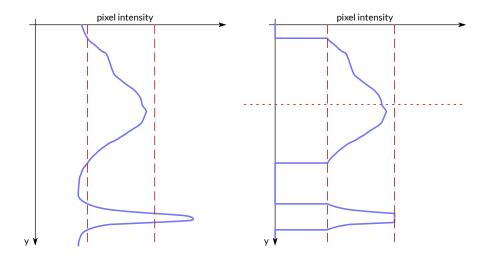
Figure 11.2: Every frame column is processed independently. For each one, the algorithm provides a 16-bit y-coordinate of the laser line position to the user.

- The receiving PC has a lower computational load, since part of the calculations are provided by the camera;
- The acquired frame is no longer needed once line coordinates calculations have been performed. To maximize frame rate and hence speed-up acquisition time, user can exclude full frame from the data sent over USB, and limit the data transmission to coordinates only (see Section 11.3.3).

11.2 LASER LINE POSITION DETECTION

To detect the exact position of the laser line in the image acquired by the sensor, every image column is processed independently, as shown in Figure 11.2. Each pixel is compared to an upper and lower threshold and eventually clamped before main column processing.

11.2.1 Thresholds


Thresholds are available to exclude part of the data from the main processing algorithm (see Figure 11.3):

- Lower threshold clamps to zero every pixel with intensity lower than its value. By setting this value appropriately, background noise can be excluded from calculations.
- Higher threshold clamps to its value every pixel with higher intensity. By setting this value appropriately, spikes effect on calculations may be mitigated.

11.2.2 Main Processing

Every column data set is then divided in separated clusters, one for every contiguous group of pixels with non-zero intensity. The algorithm selects the biggest cluster and calculates its center position.

Figure 11.3: Threshold effect on column data. When multiple clusters are present, the algorithm automatically chooses the bigger one.

This value is sent to the user as one 16-bit pixel. The pixel should be interpreted as a fixed-point number with a radix point position determined by te user through the DecimalPrecision setting. To retrieve the position from the pixel value at column C, the intensity $P^{(C)}$ should be divided by an appropriate factor:

$$Y_{line}^{(C)} = \frac{P^{(C)}}{2^d}$$

Where d is the selected decimal precision.

11.3 PROFILE ACQUISITION

As explained in Section 11.2.2, the line position is expressed as a set of 16-bit unsigned values. The acquisition method depends on the chosen video mode and color coding.

11.3.1 Video Mode 0

In Video Mode 0 the image is processed by the image processing block (see Figure 7.2) and then by the Profilometer hardware accelerator. As in standard monochrome cameras, the whole frame is provided to the user. The profile coordinates are available through the FrameRawStream chunk data field (see Section 7.3 and Example 11.2).

11.3.2 Video Mode 1

In Video Mode 1 the raw image is directly sent to the Profilometer hardware accelerator, bypassing the image processing block. As in Video Mode 0, the whole frame is provided to the user and profile coordinates are available through the FrameRawStream chunk data field.

11.3.3 Video Mode 2

In Video Mode 2 only the profile data are provided to the user as the main video stream. The color coding (MONO16 or RAW16) determines whether the data is processed or not by the image processing block.

The acquired frame is a single line, representing on 16-bit pixels the line position¹ at each column. This video mode minimizes the amount of data sent through the USB, relaxing packet size requirements for the acquisition. In this way user can easily reach maximum sensor frame rate and collect only the data useful for the measurement.

11.4 EXPLOITING FRAME COMBINER WITH PROFILOMETER

The frame combiner is particularly useful when used in combination with Video Mode 2. When high frame-rate acquisition in Video Mode 2 is taking place, the acquiring PC is forced to access very frequently small data arrays (i.e. the one-line frame providing the profile), reducing the processing time available on those data. Using the frame combiner, an arbitrary number of lines may be packed in a single frame to reduce the overhead. A 1000 fps video stream, by example, could be packed in a 1000 rows frame an then provided to the user once per second.

Frame combiner functionality is embedded in the FPGA processing so that the acquiring PC has no additional tasks to execute. Additionally, the FPGA processing guarantees that no line is skipped between subsequent packed frames.

11.5 PLAYER UTILITIES

CELERA models with profilometer extension use a dedicated camera player to exploit all their additional functionalities.

This player can be found on our website, on the User Area inside the *Linux* & *Windows SDK* folder. This special version of the CELERA player features two additional controls dedicated to the Profilometer extension (see Figure 11.4).

Figure 11.4: CELERA player for profilometer extension

11.5.1 Live Profile

The live profile form provides a chart of the line position in the acquired frame (see Figure 11.5).

¹The position is relative to ROI Top

Figure 11.5: Live Profile player form

11.5.2 Profilometer Settings

The Profilometer settings form gives access to the main extension features (see Figure 11.6). A second lower threshold and a threshold transition columns are provided for acquiring images where the background noise is not uniform across the scene. All columns from 0 to ThresholdTransitionColumn – 1 are processed with LeftLowerThreshold as the lower threshold while the others are processed with RightLowerThreshold. To operate with a single lower column, set both LeftLowerThreshold and RightLowerThreshold to the same value.

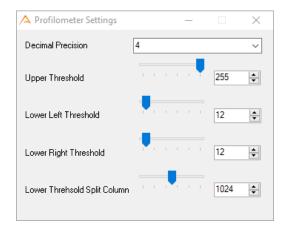


Figure 11.6: Profilometer Settings form

11.6 PARAMETERS SET-UP

 $Profilometer settings are accessible from the {\tt Profilometer} member of the {\tt CeleraProfCamera} class.$

Example Code 11.1 | Setup of profilometer parameters

```
// Set up parameters: upper threshold to maximum value (no effect) and lower
// thresholds to 10 for columns between 0 and 511 and 20 for other columns.
device.Profilometer.UpperThreshold = device.Profilometer.MaxThreshold
device.Profilometer.LeftLowerThreshold = 12
device.Profilometer.RightLowerThreshold = 12
device.Profilometer.LowerThresholdSplitColumn = 1024
device.Profilometer.Precision = 4
```

When acquiring in Video Mode 0 or 1, the profile is accessible by means of chunk data, as shown in the Example Code 11.2.

Example Code 11.2 | Chunk Data acquisition in Video Mode 1

```
byte[] chunk;
ushort chunkLength;
device.VideoMode = 1
device.EnableChunkData = true;
device.SetEnabledChunkDataFields(new ChunkDataField[] {ChunkDataField.FrameRawStream});
device.Acquire = true;
BufferPtr ptr = device.GetRawDataPtr(false);
                                                // Get image and chunk
chunk = ptr.RawChunkData;
                                                // Chunk Data
chunkLength = (ushort)chunk.Length;
                                                // Number of chunk data bytes
byte precision = _Device.Profilometer.Precision;
for (int i = 0; i < chunkLength - 1; i += 2)
    ushort intensity = (ushort)chunk[i] | ((ushort)chunk[i + 1] << 8);</pre>
    float position = intensity * Math.Pow(2, -precision));
}
```

In Video Mode 2 enabling Chunk Data is not needed. Profile may be acquired with a simple GetRaw-DataPtr instruction, once the live has been started.

Example Code 11.3 | Setup for profilometer acquisition with frame combiner

12. Warranty 147 ____

12 Warranty

Unless otherwise agreed, CELERA cameras are guaranteed for 24 months from date of purchase. The warranty covers any defects due to production and conformity, not due to misuse, tampering or negligence by the user. At discretion of the Alkeria SRL technical service, faulty device may be either repaired or replaced with another one with same characteristics.

12.1 RMA

Before sending a defective camera for repair, you should contact your dealer and follow the procedures for fault verification and eventually returning the camera. If your country is not served by an Alkeria SRL distributor, you must apply directly to the Alkeria SRL technical service sending an e-mail to rma@alkeria.com, indicating your personal details, model and serial number of the camera, along with a brief description of the fault. You will be contacted by Alkeria SRL for inspection and/or receive instructions to send the camera back for repairs. Any unauthorized material will be returned to the sender.

13

Firmware Update

Alkeria SRL development team is constantly working to add new features to the CELERA family.

When applying for Maestro USB3 free delivery, CELERA customers may be included in an SDK and firmware update notification mailing list. Subscribed users will be notified about new firmware versions available for their devices and will be able to update them, if interested.

Updates can be installed through the USB 3.2 Gen 1x1 connection using a PC running Windows 10 or Linux.

14

EMC certification and compliance

14.1 CE CONFORMITY

CELERA cameras described in this manual comply with the requirements of the EC EMC Directive 2014/30/EU of February 26, 2014.

Testing standards:

- CEI EN 55032:2015 CISPR32:2015: Electromagnetic compatibility of multimedia equipment -Emission requirements.
- CEI EN 61000-6-4:2007 + A1:2013 IEC 61000-6-4:2006 + A1:2010: Generic standards Emission standard for industrial environments (Class A device).
- CEI EN 55024:2013 + A1:2016 CISPR 24:2010 + A1:2015: Information technology equipment Immunity characteristics Limits and methods of measurement.
- CEI EN 61000-4-2:2011 IEC 61000-4-2:2008: Testing and measurement techniques Electrostatic discharge immunity test.
- CEI EN 61000-4-3:2007 + A1:2009 + A2:2011 IEC 61000-4-3:2006 + A1:2007 + A2:2010: Testing and measurement techniques Radiated, radio-frequency, electromagnetic field immunity test.

- CEI EN 61000-4-4:2013 IEC 61000-4-4:2012: Testing and measurement techniques Electrical fast transient/burst immunity test.
- CEI EN 61000-4-6:2014 + AC:2015 IEC 61000-4-6:2013: Testing and measurement techniques Immunity to conducted disturbances, induced by radio-frequency fields.

14.2 FCC CONFORMITY - CLASS A (USA)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

14.3 ICES-003 (CANADA)

Cet appareil numérique respecte les limites bruits radioélectriques applicables aux appareils numériques de Classe A prescrites dans la norme sur le matériel brouilleur: "Appareils Numériques", NMB-003 édictée par le Ministre Canadian des Communications.

"This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the interference-causing equipment standard entitled "Digital Apparatus," ICES-003 of the Canadian Department of Communications."

14.4 LIMITATION OF LIABILITY

The information in this manual is subject to change without notice. Alkeria SRL reserves the right to make improvements or changes to the devices and operating instructions at any time without prior notice. In no event shall Alkeria SRL be liable to the purchaser for any indirect, special or consequential damages or lost profits arising out of or relating to Alkeria SRL 's products, or the performance or a breach thereof, even if Alkeria SRL has been advised of the possibility thereof. Alkeria SRL 's liability, if any, to the purchaser or to the customer of the purchaser shall in no event exceed the total amounts paid to Alkeria SRL by the purchaser for a defective product. Some states do not permit the exclusion of incidental or consequential damages, and in those states the foregoing limitations may not apply. The warranties here give you specific legal rights, and you may have other legal rights which vary from state to state.

14.5 ROHS CONFORMITY

The CELERA cameras comply with the requirements of the RoHS (Restriction of Hazardous Substances) Directive 2011/65/EU.

14.6 INFORMATION FOR USERS

Alkeria SRL is committed to meeting the requirements of the European Union (EU) Waste Electrical and Electronic Equipment (WEEE) Directive. This Directive requires producers of electrical and electronic equipment to finance the take back, for reuse or recycling, of their products placed on the EU market after August 13, 2005. Alkeria SRL products are within the scope of the Directive and are labelled with a crossed-out "wheelie-bin" symbol, as required by the Directive. It indicates that the product was placed on the market after August 13, 2005 and that end users should segregate the product from other waste at end-of- life. All Alkeria SRL cameras have been manufactured after the 31st of August 2005.

This symbol on Alkeria SRL product or on its packaging means that it should not be disposed of with your other household waste. It is your responsibility to dispose of your waste equipment separately from the municipal waste stream. The correct disposal of your old appliance will help prevent potential negative consequences for the environment and human health.

List of Acronyms 152 _

List of Acronyms

CMOS Complementary MOS

ADC Analog to Digital Converter

PLL Phase Locked Loop

LMR Light Meter ROI

ROI Region Of Interest

LUT Look-Up Table

ROI Region-Of-Interest

API Application Programming Interface

Example Code

3.1	Temperature Monitoring	47
3.2	Temperature Change Event	48
4.1	Input Change Event	57
4.2	Encoder ports configuration	65
4.3	Encoder position read	66
4.4	Encoder reset with external source	66
4.5	PLL configuration	67
4.6	PLL boundaries readout	67
4.7	Output inversion	68
4.8	Output controlled via software	69
4.9	Exposure as P3 source	69
4.10	Strobe as P3 source	70
4.11	Frame start trigger as P2 source	71
4.12	Frame start trigger ready as P2 source	71
4.13	Custom signal 10 as P0 source	71
4.14	PO configuration as input	71
4.15	PO configuration as output	71
4.16	Serial interface output configuration	72
4.17	Big buffer send over serial interface	73
4.18	Serial interface input configuration	73
6.1	Get all selectable trigger sources	79
6.2	Usage of the TriggerErrors property	81
6.3	External trigger frame acquisition	82
6.4	Signal-driven exposure time	82
6.5	Encoder synchronization	83
7.1	Set LMR starting from x = 256, y = 384, and 512 x 800 pixels wide	84
7.2	Set Black Level offset correction	85
7.3	Enable frame number chunk data field	87
7.4	Enable time stamp chunk data field	87
7.5	Enable encoder position chunk data	87
7.6	Enable input status chunk data captured at frame-start trigger event	87
7.7	Enable burst number chunk data field	88
7.8	Enable sequencer page chunk data field	88

7.9	Configure chunk data, capture a frame and display the relevant data	88
7.10	$Configure\ chunk\ data, combine\ 10\ frames, set\ 1\ second\ timeout,\ flush\ operation\ triggered$	89
8.1	Select camera video mode	90
8.2	ROI configuring example	92
8.3	Set combined binning mode	96
8.4	Disable binning mode	96
8.5	Set pixel format to RGB24	97
8.6	Set ADCResolution property to 10 bits	98
8.7	Sets a bandwidth limits of 32 KiB per microframe for each channel on CELERA	99
8.8	Sets a bandwidth limits of 32 KiB per microframe on CELERA One	100
8.9	Set PacketSize property	101
8.10	Set FrameRate property	104
8.11	Enable the PreserveRates functionality	105
8.12	Set the brightness level	106
8.13	Set the contrast level	107
8.14	Set the color correction matrix coefficients	108
8.15	Set the hue level	108
8.16	Set the saturation level	109
8.17	Set white balance automatically	110
8.18	Set white balance manually	110
8.19	Set gamma	111
8.20	Set Exposure time with unit factor	112
8.21	Get the exposure length, expressed in seconds	113
8.22	Set up automatic exposure	114
8.23	Set up automatic exposure	114
8.24	Set digital gain level	115
8.25	Store lut into the camera	116
8.26	Read the Luma value of the last image	117
8.27	Read the TimeStamp value	117
8.28	Flip the image diagonally	117
8.29	Rotate the image of 270 deg	118
8.30	Retreive the maximum number of user configurations	118
8.31	Save and restore camera configuration and calibration	118
8.32	Erase configuration	118
8.33	Export camera configuration and calibration previously saved on camera memory $\ \ldots \ \ldots$	119
8.34	Load from XML and save into camera memory	119
8.35	Save and restore camera configuration from camera memory	119
8.36	Erase user configuration from camera memory	119
8.37	Set camera's main parameters and enable live acquisition	119
8.38	Enable pattern generator	120
9.1	Sequencer setup example	123
9.2	sequencer loop from page 2 to 4	123
9.3	Manual sequencer page selection	124
9.4	Sequencer page increment on external input event	125
9.5	Configure sequencer to drive two different illuminators	126

Example Code 155

9.6	Configure port 1 as frame start trigger	126
9.7	Configure sequencer to split image field	127
11.1	Setup of profilometer parameters	146
11.2	Chunk Data acquisition in Video Mode 1	146
11.3	Setup for profilemeter acquisition with frame combiner	146

